60,369 research outputs found

    Heavy Quarkonium

    Full text link
    I review heavy quarkonium physics in view of recent experimental results. In particular, I discuss new results on spin singlet states, photon and hadronic transitions, D-states and discovery of yet unexplained narrow X(3872) state.Comment: 15 pages, 16 figures. 2nd version: minor changes in references and text. Invited talk presented at the 21st International Symposium On Lepton And Photon Interactions At High Energies (LP03) 11-16 August 2003, Batavia, Illinoi

    Dimerization-induced enhancement of the spin gap in the quarter-filled two-leg rectangular ladder

    Get PDF
    We report density-matrix renormalization group calculations of spin gaps in the quarter-filled correlated two-leg rectangular ladder with bond-dimerization along the legs of the ladder. In the small rung-coupling region, dimerization along the leg bonds can lead to large enhancement of the spin gap. Electron-electron interactions further enhance the spin gap, which is nonzero for all values of the rung electron hopping and for arbitrarily small bond-dimerization. Very large spin gaps, as are found experimentally in quarter-filled band organic charge-transfer solids with coupled pairs of quasi-one-dimensional stacks, however, occur within the model only for large dimerization and rung electron hopping that are nearly equal to the hopping along the legs. Coexistence of charge order and spin gap is also possible within the model for not too large intersite Coulomb interaction

    Notes on highest weight modules of the elliptic algebra Aq,p(sl^2){\cal A}_{q,p}\left(\widehat{sl}_2\right)

    Full text link
    We discuss a construction of highest weight modules for the recently defined elliptic algebra Aq,p(sl^2){\cal A}_{q,p}(\widehat{sl}_2), and make several conjectures concerning them. The modules are generated by the action of the components of the operator LL on the highest weight vectors. We introduce the vertex operators Φ\Phi and Ψ\Psi^* through their commutation relations with the LL-operator. We present ordering rules for the LL- and Φ\Phi-operators and find an upper bound for the number of linearly independent vectors generated by them, which agrees with the known characters of sl^2\widehat{sl}_2-modules.Comment: Nonstandard macro package eliminate

    A two component jet model for the X-ray afterglow flat segment in short GRB 051221A

    Full text link
    In the double neutron star merger or neutron star-black hole merger model for short GRBs, the outflow launched might be mildly magnetized and neutron rich. The magnetized neutron-rich outflow will be accelerated by the magnetic and thermal pressure and may form a two component jet finally, as suggested by Vlahakis, Peng & K\"{o}nigl (2003). We show in this work that such a two component jet model could well reproduce the multi-wavelength afterglow lightcurves, in particular the X-ray flat segment, of short GRB 051221A. In this model, the central engine need not to be active much longer than the prompt γ\gamma-ray emission.Comment: 11 pages, 2 figure; Accepted for publication by ApJ

    Probabilistic teleportation of unknown two-particle state via POVM

    Full text link
    We propose a scheme for probabilistic teleportation of unknown two-particle state with partly entangled four-particle state via POVM. In this scheme the teleportation of unknown two-particle state can be realized with certain probability by performing two Bell state measurements, a proper POVM and a unitary transformation.Comment: 5 pages, no figur

    Metallic Triple Beam Resonator with Thick-film Printed Drive and Pickup

    No full text
    A triple beam resonator fabricated in 430S17 stainless steel with thick-film piezoelectric elements to drive and detect the vibrations is presented. The resonator substrate was fabricated by a simultaneous, double-sided photochemical etching technique and the thick-film piezoelectric elements were deposited by a standard screen-printing process. The combination of these two batch-fabrication processes provides the opportunity for mass production of the device at low cost. The resonator, a dynamically balanced triple beam tuning fork (TBTF) structure 23.5 mm long and 6.5 mm wide, has a favoured mode at 4.96 kHz with a Q-factor of 3630 operating in air

    Sub-TeV proton beam generation by ultra-intense laser irradiation of foil-and-gas target

    Get PDF
    A two-phase proton acceleration scheme using an ultra-intense laser pulse irradiating a proton foil with a tenuous heavier-ion plasma behind it is presented. The foil electrons are compressed and pushed out as a thin dense layer by the radiation pressure and propagate in the plasma behind at near the light speed. The protons are in turn accelerated by the resulting space-charge field and also enter the backside plasma, but without the formation of a quasistationary double layer. The electron layer is rapidly weakened by the space-charge field. However, the laser pulse originally behind it now snowplows the backside-plasma electrons and creates an intense electrostatic wakefield. The latter can stably trap and accelerate the pre-accelerated proton layer there for a very long distance and thus to very high energies. The two-phase scheme is verified by particle-in-cell simulations and analytical modeling, which also suggests that a 0.54 TeV proton beam can be obtained with a 10(23) W/cm(2) laser pulse. (C) 2012 American Institute of Physics. [doi:10.1063/1.3684658]Physics, Fluids & PlasmasSCI(E)EI0ARTICLE2null1
    corecore