662 research outputs found
Uji Patogenitas Spora Beauveria bassiana Strain Wamena Sebagai Agen Hayati terhadap Hama Penggerek Buah Kopi Hypothenemus hampei
Study on virulence test of Beauveria bassiana strain Wamena spore concentration toward (Hypothenemus hampei Ferr.) has conducted at Laboratorium of Hayati BPTP Dinas Perkebunan Provinsi Papua during February to April 2010. This study aimed to identify the effectiveness of B. bassiana strain Wamena which has potency as agent to control pest on fruit of Coffea sp caused by H. hampei. by dipping fruit of Coffea sp into spore suspension. Complete random design was used in this study. Four concentrations ( 0; 0.01%; 0.02%; 0.03% ; 0.04% and 0.05% of B. bassiana spore and four replicates for each concentration were used. Mortality of H. hampei was observed. Results of this study showed that all concentrations of spore killed imago of Hypothenemus hampei Ferr. The highest mortality reached 85.625% at 0.05% of spore within 10 days. Therefore, it could be concluded that 0.05% of spore as effective concentration to control H. hampei. Key words: Beauveria bassiana strain Wamena, Hypothenemus hampei Ferr., Coffea sp., and spore as effective concentration
Nonresonant Contributions in B->rho pi Decay
We consider nonresonant contributions in the Dalitz plot analysis of B->rho
pi->pi^+ pi^- pi^0 decay and their potential impact on the extraction of the
CKM parameter alpha. In particular, we examine the role of the heavy mesons B^*
and B_0, via the process B->pi (B^*, B_0)->pi^+ pi^- pi^0, and their
interference with resonant contributions in the rho-mass region. We discuss the
inherent uncertainties and suggest that the effects may be substantially
smaller than previously indicated.Comment: 15 pages, 3 figures; minor changes, version to appear in Phys. Rev.
A geometric approach to time evolution operators of Lie quantum systems
Lie systems in Quantum Mechanics are studied from a geometric point of view.
In particular, we develop methods to obtain time evolution operators of
time-dependent Schrodinger equations of Lie type and we show how these methods
explain certain ad hoc methods used in previous papers in order to obtain exact
solutions. Finally, several instances of time-dependent quadratic Hamiltonian
are solved.Comment: Accepted for publication in the International Journal of Theoretical
Physic
The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array
We have already reported the first result on the all-particle spectrum around
the knee region based on data from 2000 November to 2001 October observed by
the Tibet-III air-shower array. In this paper, we present an updated result
using data set collected in the period from 2000 November through 2004 October
in a wide range over 3 decades between eV and eV, in which
the position of the knee is clearly seen at around 4 PeV. The spectral index is
-2.68 0.02(stat.) below 1PeV, while it is -3.12 0.01(stat.) above 4
PeV in the case of QGSJET+HD model, and various systematic errors are under
study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
Moon Shadow by Cosmic Rays under the Influence of Geomagnetic Field and Search for Antiprotons at Multi-TeV Energies
We have observed the shadowing of galactic cosmic ray flux in the direction
of the moon, the so-called moon shadow, using the Tibet-III air shower array
operating at Yangbajing (4300 m a.s.l.) in Tibet since 1999. Almost all cosmic
rays are positively charged; for that reason, they are bent by the geomagnetic
field, thereby shifting the moon shadow westward. The cosmic rays will also
produce an additional shadow in the eastward direction of the moon if cosmic
rays contain negatively charged particles, such as antiprotons, with some
fraction. We selected 1.5 x10^{10} air shower events with energy beyond about 3
TeV from the dataset observed by the Tibet-III air shower array and detected
the moon shadow at level. The center of the moon was detected
in the direction away from the apparent center of the moon by 0.23 to
the west. Based on these data and a full Monte Carlo simulation, we searched
for the existence of the shadow produced by antiprotons at the multi-TeV energy
region. No evidence of the existence of antiprotons was found in this energy
region. We obtained the 90% confidence level upper limit of the flux ratio of
antiprotons to protons as 7% at multi-TeV energies.Comment: 13pages,4figures; Accepted for publication in Astroparticle Physic
The ARGO-YBJ Experiment Progresses and Future Extension
Gamma ray source detection above 30TeV is an encouraging approach for finding
galactic cosmic ray origins. All sky survey for gamma ray sources using wide
field of view detector is essential for population accumulation for various
types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has
been established. Significant progresses have been made in the experiment. A
large air shower detector array in an area of 1km2 is proposed to boost the
sensitivity. Hybrid detection with multi-techniques will allow a good
discrimination between different types of primary particles, including photons
and protons, thus enable an energy spectrum measurement for individual specie.
Fluorescence light detector array will extend the spectrum measurement above
100PeV where the second knee is located. An energy scale determined by balloon
experiments at 10TeV will be propagated to ultra high energy cosmic ray
experiments
Strong field approximation within a Faddeev-like formalism for laser-matter interactions
We consider the interaction of atomic hydrogen with an intense laser field
within the strong-field approximation. By using a Faddeev-like formalism, we
introduce a new perturbative series in the binding potential of the atom. As a
first test of this new approach, we calculate the electron energy spectrum in
the very simple case of a photon energy higher than the ionisation potential.
We show that by contrast to the standard perturbative series in the binding
potential obtained within the strong field approximation, the first terms of
the new series converge rapidly towards the results we get by solving the
corresponding time-dependent Schroedinger equation.Comment: 7 pages, 1 figur
Are protons still dominant at the knee of the cosmic-ray energy spectrum?
A hybrid experiment consisting of emulsion chambers, burst detectors and the
Tibet II air-shower array was carried out at Yangbajing (4,300 m a.s.l., 606
g/cm) in Tibet to obtain the energy spectra of primary protons and heliums.
From three-year operation, these energy spectra are deduced between
and eV by triggering the air showers associated with a high energy
core and using a neural network method in the primary mass separation. The
proton spectrum can be expressed by a single power-law function with a
differential index of and based on the
QGSJET+HD and SIBYLL+HD models, respectively, which are steeper than that
extrapolated from the direct observations of in the energy
range below eV. The absolute fluxes of protons and heliums are
derived within 30% systematic errors depending on the hadronic interaction
models used in Monte Carlo simulation. The result of our experiment suggests
that the main component responsible for the change of the power index of the
all-particle spectrum around eV, so-called ``knee'', is
composed of nuclei heavier than helium. This is the first measurement of the
differential energy spectra of primary protons and heliums by selecting them
event by event at the knee energy region.Comment: This paper has been accepted for publication Physics Letters B on
October 19th, 2005. This paper has been accepted for publication Physics
Letters B on October 19th, 200
- …