47,614 research outputs found

    Non-LTE analysis of copper abundances for the two distinct halo populations in the solar neighborhood

    Full text link
    Two distinct halo populations were found in the solar neighborhood by a series of works. They can be clearly separated by [alpha\Fe] and several other elemental abundance ratios including [Cu/Fe]. Very recently, a non-local thermodynamic equilibrium (non-LTE) study revealed that relatively large departures exist between LTE and non-LTE results in copper abundance analysis. We aim to derive the copper abundances for the stars from the sample of Nissen et al (2010) with both LTE and non-LTE calculations. Based on our results, we study the non-LTE effects of copper and investigate whether the high-alpha population can still be distinguished from the low-alpha population in the non-LTE [Cu/Fe] results. Our differential abundance ratios are derived from the high-resolution spectra collected from VLT/UVES and NOT/FIES spectrographs. Applying the MAFAGS opacity sampling atmospheric models and spectrum synthesis method, we derive the non-LTE copper abundances based on the new atomic model with current atomic data obtained from both laboratory and theoretical calculations. The copper abundances determined from non-LTE calculations are increased by 0.01 to 0.2 dex depending on the stellar parameters compared with the LTE results. The non-LTE [Cu/Fe] trend is much flatter than the LTE one in the metallicity range -1.6<[Fe/H]<-0.8. Taking non-LTE effects into consideration, the high- and low-alpha stars still show distinguishable copper abundances, which appear even more clear in a diagram of non-LTE [Cu/Fe] versus [Fe/H]. The non-LTE effects are strong for copper, especially in metal-poor stars. Our results confirmed that there are two distinct halo populations in the solar neighborhood. The dichotomy in copper abundance is a peculiar feature of each population, suggesting that they formed in different environments and evolved obeying diverse scenarios.Comment: 9 pages, 7 figures, 2 table

    Magnetic Skyrmion Transport in a Nanotrack With Spatially Varying Damping and Non-adiabatic Torque

    Full text link
    Reliable transport of magnetic skyrmions is required for any future skyrmion-based information processing devices. Here we present a micromagnetic study of the in-plane current-driven motion of a skyrmion in a ferromagnetic nanotrack with spatially sinusoidally varying Gilbert damping and/or non-adiabatic spin-transfer torque coefficients. It is found that the skyrmion moves in a sinusoidal pattern as a result of the spatially varying Gilbert damping and/or non-adiabatic spin-transfer torque in the nanotrack, which could prevent the destruction of the skyrmion caused by the skyrmion Hall effect. The results provide a guide for designing and developing the skyrmion transport channel in skyrmion-based spintronic applications.Comment: 5 pages, 6 figure

    Exploring Vortex Dynamics in the Presence of Dissipation: Analytical and Numerical Results

    Full text link
    In this paper, we systematically examine the stability and dynamics of vortices under the effect of a phenomenological dissipation used as a simplified model for the inclusion of the effect of finite temperatures in atomic Bose-Einstein condensates. An advantage of this simplified model is that it enables an analytical prediction that can be compared directly (and favorably) to numerical results. We then extend considerations to a case of considerable recent experimental interest, namely that of a vortex dipole and observe good agreement between theory and numerical computations in both the stability properties (eigenvalues of the vortex dipole stationary states) and the dynamical evolution of such configurations.Comment: 12 pages, 5 figures, accepted by PR

    Electric Transport Theory of Dirac Fermions in Graphene

    Full text link
    Using the self-consistent Born approximation to the Dirac fermions under finite-range impurity scatterings, we show that the current-current correlation function is determined by four-coupled integral equations. This is very different from the case for impurities with short-range potentials. As a test of the present approach, we calculate the electric conductivity in graphene for charged impurities with screened Coulomb potentials. The obtained conductivity at zero temperature varies linearly with the carrier concentration, and the minimum conductivity at zero doping is larger than the existing theoretical predictions, but still smaller than that of the experimental measurement. The overall behavior of the conductivity obtained by the present calculation at room temperature is similar to that at zero temperature except the minimum conductivity is slightly larger.Comment: 6 pages, 3 figure
    corecore