35,320 research outputs found
Determining at Electron-Positron Colliders
Verifying is critical to test the three generation
assumption of the Standard Model. So far our best knowledge of is
inferred either from the unitarity of CKM matrix or from single
top-quark productions upon the assumption of universal weak couplings. The
unitarity could be relaxed in new physics models with extra heavy quarks and
the universality of weak couplings could also be broken if the coupling
is modified in new physics models. In this work we propose to measure
in the process of without prior knowledge of the number
of fermion generations or the strength of the coupling. Using an
effective Lagrangian approach, we perform a model-independent analysis of the
interactions among electroweak gauge bosons and the third generation quarks,
i.e. the , and couplings. The electroweak symmetry
of the Standard Model specifies a pattern of deviations of the --
and -- couplings after one imposes the known experimental
constraint on the -- coupling. We demonstrate that, making use of
the predicted pattern and the accurate measurements of top-quark mass and width
from the energy threshold scan experiments, one can determine from the
cross section and the forward-backward asymmetry of top-quark pair production
at an {\it unpolarized} electron-positron collider.Comment: publish versio
Quadratic Projection Based Feature Extraction with Its Application to Biometric Recognition
This paper presents a novel quadratic projection based feature extraction
framework, where a set of quadratic matrices is learned to distinguish each
class from all other classes. We formulate quadratic matrix learning (QML) as a
standard semidefinite programming (SDP) problem. However, the con- ventional
interior-point SDP solvers do not scale well to the problem of QML for
high-dimensional data. To solve the scalability of QML, we develop an efficient
algorithm, termed DualQML, based on the Lagrange duality theory, to extract
nonlinear features. To evaluate the feasibility and effectiveness of the
proposed framework, we conduct extensive experiments on biometric recognition.
Experimental results on three representative biometric recogni- tion tasks,
including face, palmprint, and ear recognition, demonstrate the superiority of
the DualQML-based feature extraction algorithm compared to the current
state-of-the-art algorithm
Thermodynamic Magnon Recoil for Domain Wall Motion
We predict a thermodynamic magnon recoil effect for domain wall motions in
the presence of temperature gradients. All current thermodynamic theories
assert that a magnetic domain wall must move toward the hotter side, based on
equilibrium thermodynamic arguments. Microscopic calculations on the other hand
show that a domain wall can move either along or against the direction of heat
currents, depending on how strong the heat currents are reflected by the domain
wall. We have resolved the inconsistency between these two approaches by
augmenting the theory in the presence of thermal gradients by incorporating in
the free energy of domain walls by a heat current term present in
nonequilibrium steady states. The condition to observe a domain wall
propagation toward the colder regime is derived analytically and can be tested
by future experiments.Comment: Submitted with revision
- β¦