9,345 research outputs found
Multicellular rosettes drive fluid-solid transition in epithelial tissues
Models for confluent biological tissues often describe the network formed by
cells as a triple-junction network, similar to foams. However, higher order
vertices or multicellular rosettes are prevalent in developmental and {\it in
vitro} processes and have been recognized as crucial in many important aspects
of morphogenesis, disease, and physiology. In this work, we study the influence
of rosettes on the mechanics of a confluent tissue. We find that the existence
of rosettes in a tissue can greatly influence its rigidity. Using a generalized
vertex model and effective medium theory we find a fluid-to-solid transition
driven by rosette density and intracellular tensions. This transition exhibits
several hallmarks of a second-order phase transition such as a growing
correlation length and a universal critical scaling in the vicinity a critical
point. Further, we elucidate the nature of rigidity transitions in dense
biological tissues and other cellular structures using a generalized Maxwell
constraint counting approach. This answers a long-standing puzzle of the origin
of solidity in these systems.Comment: 11 pages, 5 figures + 8 pages, 7 figures in Appendix. To be appear in
PR
- …