7,278 research outputs found

    A Note on the Monge-Kantorovich Problem in the Plane

    Full text link
    The Monge-Kantorovich mass-transportation problem has been shown to be fundamental for various basic problems in analysis and geometry in recent years. Shen and Zheng (2010) proposed a probability method to transform the celebrated Monge-Kantorovich problem in a bounded region of the Euclidean plane into a Dirichlet boundary problem associated to a nonlinear elliptic equation. Their results are original and sound, however, their arguments leading to the main results are skipped and difficult to follow. In the present paper, we adopt a different approach and give a short and easy-followed detailed proof for their main results

    Extension Of Bertrand's Theorem And Factorization Of The Radial Schr\"odinger Equation

    Get PDF
    The Bertrand's theorem is extended, i.e. closed orbits still may exist for other central potentials than the power law Coulomb potential and isotropic harmonic oscillator. It is shown that for the combined potential V(r)=W(r)+b/r2V(r)=W(r)+b/r^2 (W(r)=arνW(r)=ar^{\nu}), when (and only when) W(r)W(r) is the Coulomb potential or isotropic harmonic oscillator, closed orbits still exist for suitable angular momentum. The correspondence between the closeness of classical orbits and the existence of raising and lowering operators derived from the factorization of the radial Schr\"odinger equation is investigated.Comment: 4 pages, 1 figug

    B(s)→SB_{(s)}\to S transitions in the light cone sum rules with the chiral current

    Full text link
    B(s)B_{(s)} semi-leptonic decays to the light scalar meson, B(s)→Slνˉl,Sllˉ  (l=e,μ,τ)B_{(s)}\to S l\bar{\nu}_l, S l \bar{l}\,\,(l=e,\mu,\tau), are investigated in the QCD light-cone sum rules (LCSR) with chiral current correlator. Having little knowledge of ingredients of the scalar mesons, we confine ourself to the two quark picture for them and work with the two possible Scenarios. The resulting sum rules for the form factors receive no contributions from the twist-3 distribution amplitudes (DA's), in comparison with the calculation of the conventional LCSR approach where the twist-3 parts play usually an important role. We specify the range of the squared momentum transfer q2q^2, in which the operator product expansion (OPE) for the correlators remains valid approximately. It is found that the form factors satisfy a relation consistent with the prediction of soft collinear effective theory (SCET). In the effective range we investigate behaviors of the form factors and differential decay widthes and compare our calculations with the observations from other approaches. The present findings can be beneficial to experimentally identify physical properties of the scalar mesons.Comment: 22 pages,16 figure
    • …
    corecore