33 research outputs found

    Prediction of Wrist Angle from Sonomyography Signals with Artificial Neural Networks Technique

    Full text link

    TongueCaps: An Improved Capsule Network Model for Multi-Classification of Tongue Color

    No full text
    Tongue color is an important part of tongue diagnosis. The change of tongue color is affected by pathological state of body, blood rheology, and other factors. Therefore, physicians can understand a patient’s condition by observing tongue color. Currently, most studies use machine learning, which is time consuming and labor intensive. Other studies use deep learning based on convolutional neural network (CNN), but the affine transformation of CNN is less robust and easily loses the spatial relationship between features. Recently, Capsule Networks (CapsNet) have been proposed to overcome these problems. In our work, CapsNet is used for tongue color research for the first time, and improved model TongueCaps is proposed, which combines the advantage of CapsNet and residual block structure to achieve end to end tongue color classification. We conduct experiments on 1371 tongue images; TongueCaps achieve accuracy is 0.8456, sensitivity is 0.8474, and specificity is 0.9586. In addition, the size of TongueCaps is 8.11 M, and FLOPs is 1,335,342, which are smaller than CNN in comparison models. Experiments have confirmed that the CapsNet can be used for tongue color research, and improved model TongueCaps, in this paper, is superior to other comparison models in terms of accuracy, specificity and sensitivity, computational complexity, and size of model

    Multi-Task Joint Learning Model for Chinese Word Segmentation and Syndrome Differentiation in Traditional Chinese Medicine

    No full text
    Evidence-based treatment is the basis of traditional Chinese medicine (TCM), and the accurate differentiation of syndromes is important for treatment in this context. The automatic differentiation of syndromes of unstructured medical records requires two important steps: Chinese word segmentation and text classification. Due to the ambiguity of the Chinese language and the peculiarities of syndrome differentiation, these tasks pose a daunting challenge. We use text classification to model syndrome differentiation for TCM, and use multi-task learning (MTL) and deep learning to accomplish the two challenging tasks of Chinese word segmentation and syndrome differentiation. Two classic deep neural networks—bidirectional long short-term memory (Bi-LSTM) and text-based convolutional neural networks (TextCNN)—are fused into MTL to simultaneously carry out these two tasks. We used our proposed method to conduct a large number of comparative experiments. The experimental comparisons showed that it was superior to other methods on both tasks. Our model yielded values of accuracy, specificity, and sensitivity of 0.93, 0.94, and 0.90, and 0.80, 0.82, and 0.78 on the Chinese word segmentation task and the syndrome differentiation task, respectively. Moreover, statistical analyses showed that the accuracies of the non-joint and joint models were both within the 95% confidence interval, with pvalue < 0.05. The experimental comparison showed that our method is superior to prevalent methods on both tasks. The work here can help modernize TCM through intelligent differentiation

    Individual brain metabolic connectome indicator based on Kullback-Leibler Divergence Similarity Estimation predicts progression from mild cognitive impairment to Alzheimer's dementia.

    Get PDF
    PURPOSE Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) reveals altered cerebral metabolism in individuals with mild cognitive impairment (MCI) and Alzheimer's dementia (AD). Previous metabolic connectome analyses derive from groups of patients but do not support the prediction of an individual's risk of conversion from present MCI to AD. We now present an individual metabolic connectome method, namely the Kullback-Leibler Divergence Similarity Estimation (KLSE), to characterize brain-wide metabolic networks that predict an individual's risk of conversion from MCI to AD. METHODS FDG-PET data consisting of 50 healthy controls, 332 patients with stable MCI, 178 MCI patients progressing to AD, and 50 AD patients were recruited from ADNI database. Each individual's metabolic brain network was ascertained using the KLSE method. We compared intra- and intergroup similarity and difference between the KLSE matrix and group-level matrix, and then evaluated the network stability and inter-individual variation of KLSE. The multivariate Cox proportional hazards model and Harrell's concordance index (C-index) were employed to assess the prediction performance of KLSE and other clinical characteristics. RESULTS The KLSE method captures more pathological connectivity in the parietal and temporal lobes relative to the typical group-level method, and yields detailed individual information, while possessing greater stability of network organization (within-group similarity coefficient, 0.789 for sMCI and 0.731 for pMCI). Metabolic connectome expression was a superior predictor of conversion than were other clinical assessments (hazard ratio (HR) = 3.55; 95% CI, 2.77-4.55; P < 0.001). The predictive performance improved further upon combining clinical variables in the Cox model, i.e., C-indices 0.728 (clinical), 0.730 (group-level pattern model), 0.750 (imaging connectome), and 0.794 (the combined model). CONCLUSION The KLSE indicator identifies abnormal brain networks predicting an individual's risk of conversion from MCI to AD, thus potentially constituting a clinically applicable imaging biomarker

    Development of a Machine Learning Model to Discriminate Mild Cognitive Impairment Subjects from Normal Controls in Community Screening

    No full text
    Background: Mild cognitive impairment (MCI) is a transitional stage between normal aging and probable Alzheimer’s disease. It is of great value to screen for MCI in the community. A novel machine learning (ML) model is composed of electroencephalography (EEG), eye tracking (ET), and neuropsychological assessments. This study has been proposed to identify MCI subjects from normal controls (NC). Methods: Two cohorts were used in this study. Cohort 1 as the training and validation group, includes184 MCI patients and 152 NC subjects. Cohort 2 as an independent test group, includes 44 MCI and 48 NC individuals. EEG, ET, Neuropsychological Tests Battery (NTB), and clinical variables with age, gender, educational level, MoCA-B, and ACE-R were selected for all subjects. Receiver operating characteristic (ROC) curves were adopted to evaluate the capabilities of this tool to classify MCI from NC. The clinical model, the EEG and ET model, and the neuropsychological model were compared. Results: We found that the classification accuracy of the proposed model achieved 84.5 ± 4.43% and 88.8 ± 3.59% in Cohort 1 and Cohort 2, respectively. The area under curve (AUC) of the proposed tool achieved 0.941 (0.893–0.982) in Cohort 1 and 0.966 (0.921–0.988) in Cohort 2, respectively. Conclusions: The proposed model incorporation of EEG, ET, and neuropsychological assessments yielded excellent classification performances, suggesting its potential for future application in cognitive decline prediction

    Research progress of X-ray luminescence optical tomography

    No full text

    Gabor-based anisotropic diffusion with lattice Boltzmann method for medical ultrasound despeckling

    No full text

    Gabor-based anisotropic diffusion with lattice Boltzmann method for medical ultrasound despeckling

    No full text
    Medical ultrasound images are corrupted by speckle noise, and despeckling methods are required to effectively and efficiently reduce speckle noise while simultaneously preserving details of tissues. This paper proposes a despeckling approach named the Gabor-based anisotropic diffusion coupled with the lattice Boltzmann method (GAD-LBM), which uses the lattice Boltzmann method (LBM) to fast solve the partial differential equation of an anisotropic diffusion model embedded with the Gabor edge detector. We evaluated the GAD-LBM on both synthetic and clinical ultrasound images, and the experimental results suggested that the GAD-LBM was superior to other nine methods in speckle suppression and detail preservation. For synthetic and clinical images, the computation time of the GAD-LBM was about 1/90 to 1/20 of the GAD solved with the finite difference, indicating the advantage of the GAD-LBM in efficiency. The GAD-LBM not only has excellent ability of noise reduction and detail preservation for ultrasound images, but also has advantages in computational efficiency

    A novel individual-level morphological brain networks constructing method and its evaluation in PET and MR images

    No full text
    Mapping the human brain is one of the great scientific challenges of the 21st century. Brain network analysis is an effective technique based on graph theory that is widely used to investigate network patterns in the human brain. Currently, mapping an individual brain network using a single image has been a hotspot in the field of brain science; techniques, such as the Kullback-Leibler (KL) method, have applications in structural Magnetic Resonance (MR) imaging. However, maintaining an image’s intensity, shape, texture and gradient information during feature extraction is very challenging. In this study, we propose a novel method for individual-level network construction based on the high-resolution Brainnetome Atlas, which shows 246 brain regions. Principal components (PCs) were obtained for each brain region using principal component analysis (PCA) for feature extraction. Individual brain networks were followed and used to construct the PC similarity measurement based on the mutual information (MI) method. To evaluate the robustness of the proposed method, three independent experiments were carried out. In the first, 34 healthy subjects underwent two Carbon 11-labeled Pittsburgh compound B Positron emission tomography (11C-PiB PET) scans; in the second, 32 healthy subjects underwent two structural MRI scans; and in the last, 10 Alzheimer's disease (AD) subjects and 10Healthy Control (HC) subjects underwent 11C-PiB PET scans. For each subject, network metrics including clustering coefficient, path length, small-world coefficient, efficiency and node betweenness centrality were calculated. The results suggested that both the individual PET and structural MRI networks exhibited a good small-word property, and the variances within subjects was also quite small in all metrics, The average value of Coefficient of variation (CV) map was 0.33 and 0.32 for PiB PET and MR images respectively, and intra-class correlation coefficients (ICC) range from approximately 0.4 to 0.7, indicating that the new method was well adapted to the subjects. The results of intra-class correlation coefficients from the test-retest experiment were consistent with previous research employing KL divergence, but with low computational complexity. Further, differences between AD subjects and HC subjects can be observed in network metrics. The method proposed herein provides a new perspective for investigating individual brain connectivity; it would enable neuroscientists to further understand the functions of the human brain
    corecore