446 research outputs found
Research on the development of carrier intelligent cloud network under the background of IPv6+
With the increasingly mature 5G technology in our country, the government has comprehensively promoted IPv6 scale
deployment, the rapid improvement of network quality of the three operators, and gradually transformed to IPv6+, the carrying network is
more fl exible, and the user opening service is more convenient, which has promoted the development of intelligent cloud network of China’s
carriers. Operators should actively respond to the challenges of IPv6+ era, based on their own intelligent cloud network development needs,
the use of SRv6 technology, promote cloud network integration, carrying a variety of online services; Provide integrated cloud network
products and services, build an intelligent operation and maintenance system, and improve user satisfaction; To build IPv6 networking
capability of the whole network and build intelligent cloud network; Do a good job in the construction of IPv6 network information security,
improve the security defense capability of intelligent cloud network, ensure the smooth operation of network, and inject new vitality into the
2B industry market for operators
Vehicle Routing Problem with Time Windows and Simultaneous Delivery and Pick-Up Service Based on MCPSO
This paper considers two additional factors of the widely researched vehicle routing problem with time windows (VRPTW). The two factors, which are very common characteristics in realworld, are uncertain number of vehicles and simultaneous delivery and pick-up service. Using minimization of the total transport costs as the objective of the extension VRPTW, a mathematic model is constructed. To solve the problem, an efficient multiswarm cooperative particle swarm optimization (MCPSO) algorithm is applied. And a new encoding method is proposed for the extension VRPTW. Finally, comparing with genetic algorithm (GA) and particle swarm optimization (PSO) algorithm, the MCPSO algorithm performs best for solving this problem
Deep Learning on Abnormal Chromosome Segments: An Intelligent Copy Number Variants Detection System Design
Gene testing emerged as a business in the last two decades, and the testing cost has been reduced from 100 million to 1000 dollars for the development of technologies. Preimplantation genetic screening (PGS) is a popular genetic profiling of embryos prior to implantation in gene testing. Copy number variants (CNVs) detection is a key task in PGS which still needs the manual operation and evaluation. At the same time, deep learning technology earns a booming development and wide application in recent years for its strong computing and learning capability. This research redesigns the PGS workflow with the intelligent CNVs detection system, and proposes the corresponding system framework. Deep learning is selected as the proper technology in the system design for CNVs detection, which also fit the task of denoising. The evaluation is conducted on simulation dataset with high accuracy and low time cost, which may achieve the requirements of clinical application and reduce the workload of bioinformatics experts. Moreover, the redesigned process and proposed framework may enlighten the intelligent system design for gene testing in following work, and provide a guidance of deep learning application in AI healthcar
Surface Coating of Cyclotetramethylenetetranitramine (HMX) Particles and Its Property Investigation
To improve the safety of cyclotetramethylenetetranitramine (HMX) particles, the polymer thermoplastic polyurethane elastomer (TPU) and nitrocellulose (NC) were introduced to coat HMX powder by water-solution suspension method and internal solution method, respectively. Scanning electron microscope (SEM) and X-ray photo-electron spectrometry (XPS) were employed to characterize the HMX samples and the role of NC and TPU in the coating processes were discussed. The impact sensitivity, friction sensitivity, and the thermal decomposition of coated HMX particles were investigated, and compared to the unprocessed ones. The results indicate that both TPU and NC can improve the wetting ability of the coating materials on HMX surface and reinforce the connection between HMX and the coating materials. The impact sensitivity and friction sensitivity of HMX samples decrease obviously after they have been surface coated; the drop height (H50) is increased from 35.24 cm to 50.08 cm, and the friction probability is reduced from 93.2 % to 58.3%. The activation energy (Ea) and the self-ignition temperature increase by 10.46 KJ·mol-1 and 1.8, respectively
The effect of ions doping on the rheological properties of ferrite ferrofluids
A series of ferrite nanoparticles were synthesized via ion doping and then were coated by surfactant and dispersed in perfluorinated polyether oil (PFPE-oil), and the various ferrite ferrofluids were obtained. The scanning electron microscope was used to characterize the morphology of particles and the dispersed state of ferrofluid, energy-dispersive spectroscopy was used to study the chemical composition of particles, fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis were used to study the coated effect of PFPE-acids on particles, vibrating sample magnetometer was used to research the magnetization curves of ferrite particles, and the rheological property of the ferrite ferrofluids was studied by a rheometer. The results show that Zn2+, Mn2+/Zn2+, and Dy3+ ions were doped in the ferrite nanoparticles with a size less than 50 nm. The four kinds of ferrite nanoparticles have the characteristics of super-paramagnetic materials, and the M-T curves decrease with increasing temperature, while their decline rates are notably different. The ferrite particles are coated with PFPE acids chemically, and the ferrofluids have well dispersion stability. The rheological properties of the ferrite ferrofluids change with the variation of ion doping, magnetic field strength, temperature, etc. The magnetism and viscosity of ferrite ferrofluids are regularly affected by ion doping, and the results will have a great significance on basic research and related applications
Transcriptome Profiling Insights the Feature of Sex Reversal Induced by High Temperature in Tongue Sole Cynoglossus semilaevis
Sex reversal induced by temperature change is a common feature in fish. Usually, the sex ratio shift occurs when temperature deviates too much from normal during embryogenesis or sex differentiation stages. Despite decades of work, the mechanism of how temperature functions during early development and sex reversal remains mysterious. In this study, we used Chinese tongue sole as a model to identify features from gonad transcriptomic and epigenetic mechanisms involved in temperature induced masculinization. Some of genetic females reversed to pseudomales after high temperature treatment which caused the sex ratio imbalance. RNA-seq data showed that the expression profiles of females and males were significantly different, and set of genes showed sexually dimorphic expression. The general transcriptomic feature of pesudomales was similar with males, but the genes involved in spermatogenesis and energy metabolism were differentially expressed. In gonads, the methylation level of cyp19a1a promoter was higher in females than in males and pseudomales. Furthermore, high-temperature treatment increased the cyp19a1a promoter methylation levels of females. We observed a significant negative correlation between methylation levels and expression of cyp19ala. In vitro study showed that CpG within the cAMP response element (CRE) of the cyp19a1a promoter was hypermethylated, and DNA methylation decreased the basal and forskolin-induced activities of cyp19a1a promoter. These results suggested that epigenetic change, i.e., DNA methylation, which regulate the expression of cyp19a1a might be the mechanism for the temperature induced masculinization in tongue sole. It may be a common mechanism in teleost that can be induced sex reversal by temperature
- …