59,866 research outputs found

    Dimerization-induced enhancement of the spin gap in the quarter-filled two-leg rectangular ladder

    Get PDF
    We report density-matrix renormalization group calculations of spin gaps in the quarter-filled correlated two-leg rectangular ladder with bond-dimerization along the legs of the ladder. In the small rung-coupling region, dimerization along the leg bonds can lead to large enhancement of the spin gap. Electron-electron interactions further enhance the spin gap, which is nonzero for all values of the rung electron hopping and for arbitrarily small bond-dimerization. Very large spin gaps, as are found experimentally in quarter-filled band organic charge-transfer solids with coupled pairs of quasi-one-dimensional stacks, however, occur within the model only for large dimerization and rung electron hopping that are nearly equal to the hopping along the legs. Coexistence of charge order and spin gap is also possible within the model for not too large intersite Coulomb interaction

    Fermi surface evolution in the antiferromagnetic state for the electron-doped t-t'-t''-J model

    Get PDF
    By use of the slave-boson mean-field approach, we have studied the electron-doped t-t'-t''-J model in the antiferromagnetic (AF) state. It is found that at low doping the Fermi surface (FS) pockets appear around (±π,0)(\pm\pi,0) and (0,±π)(0,\pm\pi), and upon increasing doping the other ones will form around (±π2,±π2)(\pm{\pi\over 2},\pm{\pi\over 2}). The evolution of the FS with doping as well as the calculated spectral weight are consistent with the experimental results.Comment: Fig. 4 is updated, to appear in Phys. Rev.

    Theory of antiferromagnetism in the electron-doped cuprate superconductors

    Full text link
    On the basis of the Hubbard model, we present the formulation of antiferromagnetism in electron-doped cuprates using the fluctuation-exchange approach. Taking into account the spin fluctuations in combination with the impurity scattering effect due to the randomly distributed dopant-atoms, we investigate the magnetic properties of the system. It is shown that the antiferromagnetic transition temperature, the onset temperature of the pseudogap formation, the single particle spectral density, and the staggered magnetization obtained by the present approach are in very good agreement with the experimental results. The distribution function in momentum space at very low temperature is observed to differ significantly from that of the Fermi liquid. Also, we find zero-energy peak in the density of states (DOS) of the antiferromagnetic phase. This DOS peak is sharp in the low doping regime, and disappears near the optimal doping where the AF order becomes weak.Comment: 12 pages, 19 figure

    Metallic Triple Beam Resonator with Thick-film Printed Drive and Pickup

    No full text
    A triple beam resonator fabricated in 430S17 stainless steel with thick-film piezoelectric elements to drive and detect the vibrations is presented. The resonator substrate was fabricated by a simultaneous, double-sided photochemical etching technique and the thick-film piezoelectric elements were deposited by a standard screen-printing process. The combination of these two batch-fabrication processes provides the opportunity for mass production of the device at low cost. The resonator, a dynamically balanced triple beam tuning fork (TBTF) structure 23.5 mm long and 6.5 mm wide, has a favoured mode at 4.96 kHz with a Q-factor of 3630 operating in air

    Efficient kk-separability criteria for mixed multipartite quantum states

    Full text link
    We investigate classification and detection of entanglement of multipartite quantum states in a very general setting, and obtain efficient kk-separability criteria for mixed multipartite states in arbitrary dimensional quantum systems. These criteria can be used to distinguish n1n-1 different classes of multipartite inseparable states and can detect many important multipartite entangled states such as GHZ states, W states, anti W states, and mixtures thereof. They detect kk-nonseparable nn-partite quantum states which have previously not been identified. Here k=2,3,,nk=2,3,\cdots,n. No optimization or eigenvalue evaluation is needed, and our criteria can be evaluated by simple computations involving components of the density matrix. Most importantly, they can be implemented in today's experiments by using at most O(n2)\mathcal{O}(n^2) local measurements.Comment: 6 pages, 4 figure

    Regional Capital Mobility in China: 1978-2006

    Get PDF
    We examine cross-region capital mobility in China and track how the degree of mobility has changed over time. The effects of fiscal and redistributive activities of different levels of government in China on private capital mobility are taken into account. Our results indicate that there was a significant improvement in capital mobility over time in China, particularly for private capital in the more developed regions. The central and provincial governments, via their taxation, spending, and transfers, loosen the relationship between private saving and investment and appear to promote capital mobility, particularly for less developed regions. There are considerable differences between more and less developed regions in terms of the degree of capital market integration and the improvement in capital mobility over time. The results have important policy implications on global re-balancing as well as regional development gap and risk-sharing within China.Feldstein-Horioka; Chinese cross-region capital mobility; saving-investment relationship; Chinese capital market integration

    Probabilistic teleportation of unknown two-particle state via POVM

    Full text link
    We propose a scheme for probabilistic teleportation of unknown two-particle state with partly entangled four-particle state via POVM. In this scheme the teleportation of unknown two-particle state can be realized with certain probability by performing two Bell state measurements, a proper POVM and a unitary transformation.Comment: 5 pages, no figur

    Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement

    Full text link
    We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1n+1 agents via the control of the others in a network. It will be shown that the outcomes in the cases that nn is odd or it is even are different in principle as the receiver has to perform a controlled-not operation on his particles for reconstructing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum information. As all the instances can be used to carry useful information, its efficiency for qubits approaches the maximal value.Comment: 9 pages, 3 figures; the revised version published in Physical Review A 72, 022338 (2005). The detail for setting up a GHZ-state quantum channel is adde
    corecore