30 research outputs found

    A method for identifying G protein-coupled receptor dimers and their interfaces

    Get PDF
    The G protein-coupled receptor (GPCR) dimer interface plays an important role in the formation and stabilization of the dimer. Therefore, identifying the potential receptor-receptor interface is an important part of studying GPCRs. Various strategies have been employed to study the GPCR dimer interface and explore its functional significance, but experimental methods lack robustness and calculations are laborious. Herein, we report a combined optimized experimental and calculation approach for identifying and structurally characterizing GPCR dimer interfaces, and constructing atomic resolution models. Using a transmembrane domain (TM) peptide containing a human immunodeficiency virus trans-acting transcriptional activator (HIV-TAT) protein transduction motif, matrix-assisted laser desorption tandem time-of-flight mass spectrometry (MALDITOF-MS), and bioluminescence resonance energy transfer (BRET), we successfully identified Apelin receptor (APJ)/Nociceptin receptor 1 (ORL1) and APJ/Vasopressin receptor 2 (V2R) heterodimer interfaces, and two key sites mediating dimerization. This method can identify dimer interfaces of GPCR homodimers and heterodimers

    Individual phosphorylation sites at the C-terminus of the apelin receptor play different roles in signal transduction

    Get PDF
    The apelin and Elabela proteins constitute a spatiotemporal double-ligand system that controls apelin receptor (APJ) signal transduction. Phosphorylation of multiple sites within the C-terminus of APJ is essential for the recruitment of Ī²-arrestins. We sought to determine the precise mechanisms by which apelin and Elabela promote APJ phosphorylation, and to elucidate the influence of Ī²-arrestin phosphorylation on G-protein-coupled receptor (GPCR)/Ī²-arrestin-dependent signaling. We used techniques including mass spectrometry (MS), mutation analysis, and bioluminescence resonance energy transfer (BRET) to evaluate the role of phosphorylation sites in APJ-mediated G-protein-dependent and Ī²-dependent signaling. Phosphorylation of APJ occurred at five serine residues in the C-terminal region (Ser335, Ser339, Ser345, Ser348 and Ser369). We also identified two phosphorylation sites in Ī²-arrestin1 and three in Ī²-arrestin2, including three previously identified residues (Ser412, Ser361, and Thr383) and two new sites, Tyr47 in Ī²-arrestin1 and Tyr48 in Ī²-arrestin2. APJ mutations did not affect the phosphorylation of Ī²-arrestins, but it affects the Ī²-arrestin signaling pathway, specifically Ser335 and Ser339. Mutation of Ser335 decreased the ability of the receptor to interact with Ī²-arrestin1/2 and AP2, indicating that APJ affects the Ī²-arrestin signaling pathway by stimulating Elabela. Mutation of Ser339 abolished the capability of the receptor to interact with GRK2 and Ī²-arrestin1/2 upon stimulation with apelin-36, and disrupted receptor internalization and Ī²-arrestin-dependent ERK1/2 activation. Five peptides act on distinct phosphorylation sites at the APJ C-terminus, differentially regulating APJ signal transduction and causing different biological effects. These findings may facilitate screening for drugs to treat cardiovascular and metabolic diseases

    Identification of potential inhibitors of omicron variant of SARS-Cov-2 RBD based virtual screening, MD simulation, and DFT

    Get PDF
    Emergence of the SARS-CoV-2 Omicron variant of concern (VOC; B.1.1.529) resulted in a new peak of the COVID-19 pandemic, which called for development of effective therapeutics against the Omicron VOC. The receptor binding domain (RBD) of the spike protein, which is responsible for recognition and binding of the human ACE2 receptor protein, is a potential drug target. Mutations in receptor binding domain of the S-protein have been postulated to enhance the binding strength of the Omicron VOC to host proteins. In this study, bioinformatic analyses were performed to screen for potential therapeutic compounds targeting the omicron VOC. A total of 92,699 compounds were screened from different libraries based on receptor binding domain of the S-protein via docking and binding free energy analysis, yielding the top 5 best hits. Dynamic simulation trajectory analysis and binding free energy decomposition were used to determine the inhibitory mechanism of candidate molecules by focusing on their interactions with recognized residues on receptor binding domain. The ADMET prediction and DFT calculations were conducted to determine the pharmacokinetic parameters and precise chemical properties of the identified molecules. The molecular properties of the identified molecules and their ability to interfere with recognition of the human ACE2 receptors by receptor binding domain suggest that they are potential therapeutic agents for SARS-CoV-2 Omicron VOC

    Recognition of an expanded genetic alphabet by type-II restriction endonucleases and their application to analyze polymerase fidelity

    Get PDF
    To explore the possibility of using restriction enzymes in a synthetic biology based on artificially expanded genetic information systems (AEGIS), 24 type-II restriction endonucleases (REases) were challenged to digest DNA duplexes containing recognition sites where individual Cs and Gs were replaced by the AEGIS nucleotides Z and P [respectively, 6-amino-5-nitro-3-(1ā€²-Ī²-d-2ā€²-deoxyribofuranosyl)-2(1H)-pyridone and 2-amino-8-(1ā€²-Ī²-d-2ā€²-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one]. These AEGIS nucleotides implement complementary hydrogen bond donorā€“donorā€“acceptor and acceptorā€“acceptorā€“donor patterns. Results allowed us to classify type-II REases into five groups based on their performance, and to infer some specifics of their interactions with functional groups in the major and minor grooves of the target DNA. For three enzymes among these 24 where crystal structures are available (BcnI, EcoO109I and NotI), these interactions were modeled. Further, we applied a type-II REase to quantitate the fidelity polymerases challenged to maintain in a DNA duplex C:G, T:A and Z:P pairs through repetitive PCR cycles. This work thus adds tools that are able to manipulate this expanded genetic alphabet in vitro, provides some structural insights into the working of restriction enzymes, and offers some preliminary data needed to take the next step in synthetic biology to use an artificial genetic system inside of living bacterial cells

    Disruption of 5-hydroxytryptamine 1A receptor and orexin receptor 1 heterodimer formation affects novel G protein-dependent signaling pathways and has antidepressant effects in vivo

    Get PDF
    G protein-coupled receptor (GPCR) heterodimers are new targets for the treatment of depression. Increasing evidence supports the importance of serotonergic and orexin-producing neurons in numerous physiological processes, possibly via a crucial interaction between 5-hydroxytryptamine 1A receptor (5-HT1AR) and orexin receptor 1 (OX1R). However, little is known about the function of 5-HT1AR/OX1R heterodimers. It is unclear how the transmembrane domains (TMs) of the dimer affect its function and whether its modulation mediates antidepressant-like effects. Here, we examined the mechanism of 5-HT1AR/OX1R dimerization and downstream G protein-dependent signaling. We found that 5-HT1AR and OX1R form constitutive heterodimers that induce novel G protein-dependent signaling, and that this heterodimerization does not affect recruitment of Ī²-arrestins to the complex. In addition, we found that the structural interface of the active 5-HT1AR/OX1R dimer transforms from TM4/TM5 in the basal state to TM6 in the active conformation. We also used mutation analyses to identify key residues at the interface (5-HT1AR R1514.40, 5-HT1AR Y1985.41, and OX1R L2305.54). Injection of chronic unpredictable mild stress (CUMS) rats with TM4/TM5 peptides improved their depression-like emotional status and decreased the number of endogenous 5-HT1AR/OX1R heterodimers in the rat brain. These antidepressant effects may be mediated by upregulation of BDNF levels and enhanced phosphorylation and activation of CREB in the hippocampus and medial prefrontal cortex. This study provides evidence that 5-HT1AR/OX1R heterodimers are involved in the pathological process of depression. Peptides including TMs of the 5-HT1AR/OX1R heterodimer interface are candidates for the development of compounds with fast-acting antidepressant-like effects

    Catalytic Hydrolysis Mechanism of Cocaine by Human Carboxylesterase 1: An Orthoester Intermediate Slows Down the Reaction

    No full text
    Human carboxylesterase 1 (hCES1) is a major carboxylesterase in the human body and plays important roles in the metabolism of a wide variety of substances, including lipids and drugs, and therefore is attracting more and more attention from areas including lipid metabolism, pharmacokinetics, drugā€“drug interactions, and prodrug activation. In this work, we studied the catalytic hydrolysis mechanism of hCES1 by the quantum mechanics computation method, using cocaine as a model substrate. Our results support the four-step theory of the esterase catalytic hydrolysis mechanism, in which both the acylation stage and the deacylation stage include two transition states and a tetrahedral intermediate. The roles and cooperation of the catalytic triad, S221, H468, and E354, were also analyzed in this study. Moreover, orthoester intermediates were found in hCES1-catalyzed cocaine hydrolysis reaction, which significantly elevate the free energy barrier and slow down the reaction. Based on this finding, we propose that hCES1 substrates with Ī²-aminocarboxylester structure might form orthoester intermediates in hCES1-catalyzed hydrolysis, and therefore prolong their in vivo half-life. Thus, this study helps to clarify the catalytic mechanism of hCES1 and elucidates important details of its catalytic process, and furthermore, provides important insights into the metabolism of hCES1 substrates and drug designing

    Research Advances of Bioactive Sesquiterpenoids Isolated from Marine-Derived Aspergillus sp.

    No full text
    Marine fungi Aspergillus sp. is an important source of natural active lead compounds with biological and chemical diversity, of which sesquiterpenoids are an extremely important class of bioactive secondary metabolites. In this paper, we review the sources, chemical structures, bioactivity, biosynthesis, and druggability evaluation of sesquiterpenoids discovered from marine fungi Aspergillus sp. since 2008. The Aspergillus species involved include mainly Aspergillus fumigatus, Aspergillus versicolor, Aspergillus flavus, Aspergillus ustus, Aspergillus sydowii, and so on, which originate from sponges, marine sediments, algae, mangroves, and corals. In recent years, 268 sesquiterpenoids were isolated from secondary metabolites of marine Aspergillus sp., 131 of which displayed bioactivities such as antitumor, antimicrobial, anti-inflammatory, and enzyme inhibitory activity. Furthermore, the main types of active sesquiterpenoids are bisabolanes, followed by drimanes, nitrobenzoyl, etc. Therefore, these novel sesquiterpenoids will provide a large number of potential lead compounds for the development of marine drugs

    The Complex Structure of Protein AaLpxC from Aquifex aeolicus with ACHN-975 Molecule Suggests an Inhibitory Mechanism at Atomic-Level against Gram-Negative Bacteria

    No full text
    New drugs with novel antibacterial targets for Gram-negative bacterial pathogens are desperately needed. The protein LpxC is a vital enzyme for the biosynthesis of lipid A, an outer membrane component of Gram-negative bacterial pathogens. The ACHN-975 molecule has high enzymatic inhibitory capacity against the infectious diseases, which are caused by multidrug-resistant bacteria, but clinical research was halted because of its inflammatory response in previous studies. In this work, the structure of the recombinant UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase from Aquifex aeolicus in complex with ACHN-975 was determined to a resolution at 1.21 ƅ. According to the solved complex structure, ACHN-975 was docked into the AaLpxCā€™s active site, which occupied the site of AaLpxC substrate. Hydroxamate group of ACHN-975 forms five-valenced coordination with resides His74, His226, Asp230, and the long chain part of ACHN-975 containing the rigid alkynyl groups docked in further to interact with the hydrophobic area of AaLpxC. We employed isothermal titration calorimetry for the measurement of affinity between AaLpxC mutants and ACHN-975, and the results manifest the key residues (His74, Thr179, Tyr212, His226, Asp230 and His253) for interaction. The determined AaLpxC crystal structure in complex with ACHN-975 is expected to serve as a guidance and basis for the design and optimization of molecular structures of ACHN-975 analogues to develop novel drug candidates against Gram-negative bacteria
    corecore