35 research outputs found

    B7-H4 Polymorphism Influences the Prevalence of Diabetes Mellitus and Pro-Atherogenic Dyslipidemia in Patients with Psoriasis.

    Get PDF
    BACKGROUND The co-inhibitory molecule B7-H4 is located in the genomic regions associated with type 1 diabetes (T1D) susceptibility. However, the correlation of B7-H4 with glycometabolism and dyslipidemia has never been studied. OBJECTIVE To explore the influence of B7-H4 polymorphism on the prevalence of diabetes mellitus (DM) and dyslipidemia in psoriasis. METHODS In this single-center cross-sectional study, we recruited 265 psoriatic patients receiving methotrexate (MTX) treatment. Thirteen single-nucleotide polymorphisms (SNPs) in B7-H4 were genotyped. Serum levels of total cholesterol (TC), triglycerides (TG), lipoprotein (a) (LP(a)), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein (LDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB) were measured at baseline and week 12. RESULTS The GG genotype carriers of rs12025144 in B7-H4 had a higher prevalence of DM (57.14% vs. 17.71% vs. 18.67%, p = 0.0018), and had a poorer response to MTX in diabetic patients (p < 0.05), compared with AA or AG genotype carriers. The AG genotype of rs2066398 was associated with higher levels of pro-atherogenic lipids. MTX significantly downregulated the level of anti-atherogenic lipid ApoA1 in AA genotype carriers of rs2066398. CONCLUSIONS The genotypes rs12025144 and rs2066398 in B7-H4 were correlated with a higher prevalence of DM and dyslipidemia in psoriasis, respectively

    Canakinumab leads to rapid reduction of neutrophilic inflammation and long-lasting response in Schnitzler syndrome.

    Get PDF
    Interleukin-1 (IL-1)-blocking therapies are effective in reducing disease severity and inflammation in Schnitzler syndrome. Here, we present a patient with Schnitzler syndrome treated successfully using canakinumab for over 10 years. Complete clinical response was associated with a decrease in dermal neutrophil number and expression of the pro-inflammatory cytokines IL-1β, IL-8, and IL-17 as assessed by immunohistochemical studies

    MTHFR Polymorphism and Folic Acid Supplementation Influence Serum Homocysteine Levels in Psoriatic Patients Treated with Methotrexate.

    Get PDF
    BACKGROUND Hyperhomocysteinemia has been reported in psoriasis. We investigated the effect of methylenetetrahydrofolate reductase (MTHFR), polymorphism and folic acid supplementation on serum homocysteine levels in psoriasis. METHODS Serum homocysteine levels were detected at baseline and at week 12 in 201 patients who were genotyped with MTHFR rs1801133 without and 93 psoriatic patients with folate supplement. RESULTS TT genotype carriers of MTHFR rs1801133 had significantly higher serum homocysteine levels at baseline and at week 12, a better PASI 75 response rate at week 8, and a higher PASI 90 response rate at week 12 than the CT and CC genotype carriers. Multiple regression analysis demonstrated that serum homocysteine concentration at baseline was significantly associated with sex, weight, PASI score at baseline, and the rs1801133 genotype. The significant upregulation of serum homocysteine levels after treatment with methotrexate (MTX) was only observed in male CT and CC genotype carriers and female CC genotype carriers. In contrast, folic acid supplementation significantly decreased serum homocysteine levels after MTX treatment but only in male psoriatic patients. CONCLUSIONS The effect of MTX on serum homocysteine levels was associated with the polymorphism of MTHFR rs1801133 and sex. Folic acid supplementation only decreased serum homocysteine levels in male psoriatic patients

    MTHFR Gene Polymorphism Association With Psoriatic Arthritis Risk and the Efficacy and Hepatotoxicity of Methotrexate in Psoriasis.

    Get PDF
    Aims To assess whether MTHFR rs1801131 and rs1801133 SNPs are associated with concomitant psoriatic arthritis (PsA) and investigate the efficacy and hepatotoxicity of MTX in patients with psoriasis in the Han Chinese population. Methods This prospective, single-arm, interventional study recruited a total of 309 patients with psoriasis, 163 with psoriatic arthritis and 146 without psoriatic arthritis, who completed a 12-week MTX treatment and 1,031 healthy controls. Patients' characteristics including age, gender, disease duration, height, weight, smoking status, alcohol consumption, medical history, disease severity and liver function test results were accessed and recorded. Single nucleotide polymorphism (SNP) genotyping of rs1801131 and rs1801133 in the MTHFR gene was performed. Results The rs1801133 CC genotype was more frequent in patients with PsA than those with PsO and healthy controls (42.3% vs. 28.8% vs. 33.1%, p < 0.05). The 90% reduction from baseline PASI score (PASI 90) response rates to MTX were significantly higher in patients with the rs1801133 TT genotype than those with the CT and CC genotype (33.96% vs. 19.31% vs. 14.41%, OR = 2.76, p = 0.006). The rs1801133 CT+TT genotype was more frequent in PsA patients with abnormal liver function than in those with normal liver function (p < 0.05). In addition, patients with the rs1801131 CT genotype had lower PASI 75 response rates to MTX (OR = 0.49, p = 0.01), and lower risk of ALT elevation (OR = 0.46, p = 0.04). Conclusions This study provided some evidence for MTHFR polymorphism association with the risk of PsA and the efficacy and hepatotoxicity of the low-dose MTX in the Chinese population. Given the relatively small sample size and potentially missed diagnosis of PsA, the results from this study warrant further investigation

    The Impact of the Soil Survival of the Pathogen of <i>Fusarium</i> Wilt on Soil Nutrient Cycling Mediated by Microorganisms

    No full text
    Fusarium wilt of Momordica charantia in the greenhouse is one of the most severe crop diseases in Shandong Province, P.R. China. This study aimed to investigate the mechanisms of accumulation and long-term survival of the pathogen in naturally pathogenic soils. Soil physicochemical properties were tested after applying a highly virulent strain of Fusarium wilt to M. charantia in an artificial disease nursery. The functional structure of soil microorganisms was analyzed through amplicon sequencing. The highly virulent strain SG−15 of F. oxysporum f. sp. momordicae was found to cause Fusarium wilt in M. charantia in Shandong Province. The strain SG−15 could not infect 14 non-host crops, including Solanum melongena and Lycopersicon esculentum, but it had varying degrees of pathogenicity towards 11 M. charantia varieties. In the artificial disease nursery for Fusarium wilt of M. charantia, the F. oxysporum was distributed in the soil to a depth of 0–40 cm and was mainly distributed in crop residues at 0–10 cm depth. During crop growth, F. oxysporum primarily grows and reproduces in susceptible host plants, rather than disease-resistant hosts and non-host crops. The colonization of the pathogen of Fusarium wilt significantly changed the soil physicochemical properties, the functional structure of soil microorganisms and the circulation of soil elements such as carbon, nitrogen, phosphorus and sulfur. Soil pH value, organic matter content, available iron content, available manganese content, FDA hydrolase activity and polyphenol oxidase activity were significantly correlated with the relative abundance of Fusarium wilt pathogens in the soil. In general, this study suggests that susceptible host plants facilitate the accumulation of Fusarium wilt pathogens in the soil. These pathogens can mediate the decomposition process of plant residues, particularly those of diseased plants, and indirectly or directly affect soil’s chemical properties

    MicroRNA-125a-5p regulates the effect of Tregs on Th1 and Th17 through targeting ETS-1/STAT3 in psoriasis

    Get PDF
    Abstract Background Psoriasis is an inflammatory disease mediated by helper T (Th)17 and Th1 cells. MicroRNA-125a (miR-125a) is reduced in the lesional skin of psoriatic patients. However, the mechanism by which miR-125a participates in psoriasis remains unclear. Methods The levels of miR-125a-5p and its downstream targets (ETS-1, IFN-γ, and STAT3) were detected in CD4+ T cells of healthy controls and psoriatic patients by quantitative real-time PCR (qRT-PCR). In vitro, transfection of miR-125a-5p mimics was used to analyze the effect of miR-125a-5p on the differentiation of Th17 cells by flow cytometry. Imiquimod (IMQ)-induced mouse model was used to evaluate the role of upregulating miR-125a-5p by intradermal injection of agomir-125a-5p in vivo. Results miR-125a-5p was downregulated in peripheral blood CD4+ T cells of psoriatic patients, which was positively associated with the proportion of regulatory T cells (Tregs) and negatively correlated with the Psoriasis Area and Severity Index (PASI) score. Moreover, the miR-125a-5p mimics promoted the differentiation of Tregs and downregulated the messenger RNA (mRNA) levels of ETS-1, IFN-γ, and STAT3 in murine CD4+ T cells. Furthermore, agomir-125a-5p alleviated psoriasis-like inflammation in an IMQ-induced mouse model by downregulating the proportion of Th17 cells. Conclusions miR-125a-5p may have therapeutic potential in psoriasis by restoring the suppressive function of Tregs on Th17 cells through targeting STAT3, and on Th1 cells indirectly through targeting ETS-1 and IFN-γ

    Reliability study of the motor controller of pure electric vans

    No full text
    The market of electric vehicles (EVs) is rapidly growing across the world attributed to their unique feature of zero carbon emission. Take the Chinese market as an example, 984,000 pure electric vehicles were sold in China in 2018, which is an increase of 50.8% over the same period of the previous year. This means there will be more and more electric vehicles will run on the road in the future. However, the reliability of these electric vehicles is still an open issue remaining to resolve today. In particular, the reliability of the motor controller in electric vehicles is receiving more concern than ever before. On the one hand, this is because it is well known that power electronic components in the controller are much less reliable than the mechanical components in other EV subassemblies. One the other hand, it is because the failure of motor controller may lead to dangerous accidents on the road. Previously, much effort has been made to try to predict the reliability of motor controller, however detailed investigation of its reliability issues has never been done before. In view of this, a detailed reliability study of the motor controller in pure electric vans will be conducted in this paper, with the consideration of the fact that more than 90% of sold commercial electric vehicles are pure electric vans. In the research, the detailed root causes of the reliability issues in the motor controller will be investigated first and then based on which the failure rates of individual components (e.g. control module, driver module, communication module, and discharging module) in the controller will be estimated with the aid of fault tree analysis and the international standards IEC TR62308-2004, MIL-HDBH-217E and the technical standards for the Chinese electric vehicle industry. Finally, the tendency of the unreliability index of the entire motor controller against the service life of the electric vehicle is estimated based on the fault tree analysis results in order to obtain a more reliable understanding of the reliability performance of the motor controller over time. From such detailed reliability research, it has been found that the reliability performance of the motor controller will degrade gradually over time; and among the four functional modules of the controller the control module is most vulnerable, followed by driver module. This could be due to the application of more electronic components and thinner printed lines on the module

    Annexin A6 Polymorphism Is Associated with Pro-atherogenic Lipid Profiles and with the Downregulation of Methotrexate on Anti-Atherogenic Lipid Profiles in Psoriasis

    Get PDF
    Background: Annexin A6 (AnxA6) is a lipid-binding protein that regulates cholesterol homeostasis and secretory pathways. However, the correlation of AnxA6 polymorphism with lipometabolism has never been studied in psoriasis. Objectives: To investigate the impact of AnxA6 polymorphism on lipid profiles and the expression of AnxA6 protein in both peripheral blood mononuclear cells (PBMCs) and lipometabolism in psoriasis. Methods: A total of 265 psoriatic patients received methotrexate (MTX) treatment for 12 weeks, after which their lipid profiles were determined by measuring total cholesterol (TC), triglycerides (TGs), lipoprotein (a) [LP(a)], high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein (LDL), apolipoprotein (a)1 (ApoA1), and apolipoprotein B (ApoB). In addition, AnxA6 (rs11960458) was genotyped in 262 patients and the expression of AnxA6 in PBMCs was measured by Western blotting at baseline and week 8 post-MTX treatment. Results: The CC genotype carriers of rs11960458 had a lower expression of AnxA6 and lower levels of the pro-atherogenic lipids TC, LDL, and ApoB compared to TC genotype carriers. MTX significantly downregulated the levels of the anti-atherogenic lipids HDL-C and ApoA1 and the level of AnxA6 in TC genotype carriers, as well as the level of TGs in CC genotype carriers. Conclusions: The polymorphism of AnxA6, rs11960458, was statistically associated with the levels of pro-atherogenic lipids and with the downregulation of MTX on the levels of anti-atherogenic lipids and TGs in psoriasis

    MicroRNA-148b Inhibits the Malignant Biological Behavior of Melanoma by Reducing Sirtuin 7 Expression Levels

    No full text
    There is growing evidence that microRNA-148b (miR-148b) can inhibit the growth of malignant cells while sirtuin 7 (SIRT7) may perform its carcinogenic effect by deacetylating H3K18. This study investigated the mechanism of miR-148b/SIRT7 on how it affects the malignant biological behavior of melanoma. It was established that the expression of miR-148b was downregulated in melanoma while that of SIRT7 was upregulated but negatively regulated by miR-148b through binding to the 3′UTR of SIRT7. Ectopic expression of miR-148b reduced the proliferation, migration, and invasion of melanoma cells, but SIRT7 reversed these functions of miR-148b. Moreover, tumor growth and metastasis experiments showed that miR-148b could significantly suppress proliferation and metastasis of melanoma in vivo. Overall, miR-148b inhibits the malignant biological behavior of melanoma by reducing the expression level of SIRT7. The development of miR-148b as a novel potential therapeutic approach for melanoma may be possible in the future
    corecore