18 research outputs found
Evidence for quasi-one-dimensional charge density wave in CuTe by angle-resolved photoemission spectroscopy
We report the electronic structure of CuTe with a high charge density wave
(CDW) transition temperature Tc = 335 K by angle-resolved photoemission
spectroscopy (ARPES). An anisotropic charge density wave gap with a maximum
value of 190 meV is observed in the quasi-one-dimensional band formed by Te px
orbitals. The CDW gap can be filled by increasing temperature or electron
doping through in situ potassium deposition. Combining the experimental results
with calculated electron scattering susceptibility and phonon dispersion, we
suggest that both Fermi surface nesting and electron-phonon coupling play
important roles in the emergence of the CDW
Bidirectional multi-photon communication between remote superconducting nodes
Quantum communication testbeds provide a useful resource for experimentally
investigating a variety of communication protocols. Here we demonstrate a
superconducting circuit testbed with bidirectional multi-photon state transfer
capability using time-domain shaped wavepackets. The system we use to achieve
this comprises two remote nodes, each including a tunable superconducting
transmon qubit and a tunable microwave-frequency resonator, linked by a 2
m-long superconducting coplanar waveguide, which serves as a transmission line.
We transfer both individual and superposition Fock states between the two
remote nodes, and additionally show that this bidirectional state transfer can
be done simultaneously, as well as used to entangle elements in the two nodes.Comment: Main Paper has 6 pages, 4 figures. Supplementary has 14 pages, 16
figures, 2 table
Two-dimensional optomechanical crystal resonator in gallium arsenide
In the field of quantum computation and communication there is a compelling
need for quantum-coherent frequency conversion between microwave electronics
and infra-red optics. A promising platform for this is an optomechanical
crystal resonator that uses simultaneous photonic and phononic crystals to
create a co-localized cavity coupling an electromagnetic mode to an acoustic
mode, which then via electromechanical interactions can undergo direct
transduction to electronics. The majority of work in this area has been on
one-dimensional nanobeam resonators which provide strong optomechanical
couplings but, due to their geometry, suffer from an inability to dissipate
heat produced by the laser pumping required for operation. Recently, a
quasi-two-dimensional optomechanical crystal cavity was developed in silicon
exhibiting similarly strong coupling with better thermalization, but at a
mechanical frequency above optimal qubit operating frequencies. Here we adapt
this design to gallium arsenide, a natural thin-film single-crystal
piezoelectric that can incorporate electromechanical interactions, obtaining a
mechanical resonant mode at f_m ~ 4.5 GHz ideal for superconducting qubits, and
demonstrating optomechanical coupling g_om/(2pi) ~ 650 kHz
Developing a platform for linear mechanical quantum computing
Linear optical quantum computing provides a desirable approach to quantum
computing, with a short list of required elements. The similarity between
photons and phonons points to the interesting potential for linear mechanical
quantum computing (LMQC), using phonons in place of photons. While
single-phonon sources and detectors have been demonstrated, a phononic
beamsplitter element remains an outstanding requirement. Here we demonstrate
such an element, using two superconducting qubits to fully characterize a
beamsplitter with single phonons. We further use the beamsplitter to
demonstrate two-phonon interference, a requirement for two-qubit gates,
completing the toolbox needed for LMQC. This advance brings linear quantum
computing to a fully solid-state system, along with straightforward conversion
between itinerant phonons and superconducting qubits
Recommended from our members
Modular Quantum Processor with an All-to-All Reconfigurable Router
Superconducting qubits provide a promising approach to large-scale fault-tolerant quantum computing. However, qubit connectivity on a planar surface is typically restricted to only a few neighboring qubits. Achieving longer-range and more flexible connectivity, which is particularly appealing in light of recent developments in error-correcting codes, however, usually involves complex multilayer packaging and external cabling, which is resource intensive and can impose fidelity limitations. Here, we propose and realize a high-speed on-chip quantum processor that supports reconfigurable all-to-all coupling with a large on-off ratio. We implement the design in a four-node quantum processor, built with a modular design comprising a wiring substrate coupled to two separate qubit-bearing substrates, each including two single-qubit nodes. We use this device to demonstrate reconfigurable controlled- gates across all qubit pairs, with a benchmarked average fidelity of 96.00% ± 0.08% and best fidelity of 97.14% ± 0.07%, limited mainly by dephasing in the qubits. We also generate multiqubit entanglement, distributed across the separate modules, demonstrating GHZ-3 and GHZ-4 states with fidelities of 88.15% ± 0.24% and 75.18% ± 0.11%, respectively. This approach promises efficient scaling to larger-scale quantum circuits and offers a pathway for implementing quantum algorithms and error-correction schemes that benefit from enhanced qubit connectivity
Recommended from our members
Quantum Networking with Superconducting Qubits
Superconducting qubits, created using Josephson-based superconducting circuits, offer a promising platform for quantum computing. These circuits have been successfully scaled to hundreds of qubits. However, further scaling of superconducting quantum processors faces challenges such as fabrication yield, frequency collisions, and chip-scale correlated errors induced by cosmic rays. One potential solution is to interconnect small superconducting quantum processors to form a quantum network, facilitating distributed quantum computing. Several experimental results on superconducting quantum networks with various topologies have been presented. These results pave the way for distributed quantum computing and offer testbeds for various quantum communication protocols
Comparing many-body localization lengths via nonperturbative construction of local integrals of motion
Many-body localization (MBL), characterized by the absence of thermalization and the violation of conventional thermodynamics, has elicited much interest both as a fundamental physical phenomenon and for practical applications in quantum information. A phenomenological model which describes the system using a complete set of local integrals of motion (LIOMs) provides a powerful tool to understand MBL but can usually be computed only approximately. Here we explicitly compute a complete set of LIOMs with a nonperturbative approach by maximizing the overlap between LIOMs and physical spin operators in real space. The set of LIOMs satisfies the desired exponential decay of the weight of LIOMs in real space. This LIOM construction enables a direct mapping from the real-space Hamiltonian to the phenomenological model and thus enables studying the localized Hamiltonian and the system dynamics. We can thus study and compare the localization lengths extracted from the LIOM weights, their interactions, and dephasing dynamics, revealing interesting aspects of many-body localization. Our scheme is immune to accidental resonances and can be applied even at the phase transition point, providing a tool to study the microscopic features of the phenomenological model of MBL