3,579 research outputs found

    Optimal excitation controllers, and location and sizing of energy storage for all-electric ship power system

    Get PDF
    The Navy\u27s future all-electric ship power system is based on the integrated power system (IPS) architecture consisting of power generation, propulsion systems, hydrodynamics, and DC zonal electric distribution system (DC-ZEDS). To improve the power quality, optimal excitation systems, and optimal location and sizing of energy storage modules (ESMs) are studied. In this dissertation, clonal selection algorithm (CSA) based controller design is firstly introduced. CSA based controller design shows better exploitation ability with relatively long search time when compared to a particle swarm optimization (PSO) based design. Furthermore, \u27optimal\u27 small population PSO (SPPSO) based excitation controller is introduced. Parameter sensitivity analysis shows that the parameters of SPPSO for regeneration can be fined tuned to achieve fast optimal controller design, and thus exploiting SPPSO features for problem of particles get trapped in local minima and long search time. Furthermore, artificial immune system based concepts are used to develop adaptive and coordinated excitation controllers for generators on ship IPS. The computational approaches for excitation controller designs have been implemented on digital signal processors interfaced to an actual laboratory synchronous machine, and to multimachine electric ship power systems simulated on a real-time digital simulator. Finally, an approach to evaluate ESM location and sizing is proposed using three metrics: quality of service, survivability and cost. Multiple objective particle swarm optimization (MOPSO) is used to optimize these metrics and provide Pareto fronts for optimal ESM location and sizing --Abstract, page iv
    • …
    corecore