211 research outputs found

    A probable Milli-Parsec Supermassive Binary Black Hole in the Nearest Quasar Mrk 231

    Full text link
    Supermassive binary black holes (BBHs) are unavoidable products of galaxy mergers and are expected to exist in the cores of many quasars. Great effort has been made during the past several decades to search for BBHs among quasars; however, observational evidence for BBHs remains elusive and ambiguous, which is difficult to reconcile with theoretical expectations. In this paper, we show that the distinct optical-to-UV spectrum of Mrk 231 can be well interpreted as emission from accretion flows onto a BBH, with a semimajor axis of ~590AU and an orbital period of ~1.2 year. The flat optical and UV continua are mainly emitted from a circumbinary disk and a mini-disk around the secondary black hole (BH), respectively; and the observed sharp drop off and flux deficit at wavelength lambda ~ 4000-2500 Angstrom is due to a gap (or hole) opened by the secondary BH migrating within the circumbinary disk. If confirmed by future observations, this BBH will provide a unique laboratory to study the interplay between BBHs and accretion flows onto them. Our result also demonstrates a new method to find sub-parsec scale BBHs by searching for deficits in the optical-to-UV continuum among the spectra of quasars.Comment: a typo in equation (2) and also in equation (5) of the Appendix is fixed; 9 pages, 7 figure

    Rapid Changes of Photospheric Magnetic Field after Tether-Cutting Reconnection and Magnetic Implosion

    Full text link
    The rapid, irreversible change of the photospheric magnetic field has been recognized as an important element of the solar flare process. This Letter reports such a rapid change of magnetic fields during the 2011 February 13 M6.6 flare in NOAA AR 11158 that we found from the vector magnetograms of the Helioseismic and Magnetic Imager with 12-min cadence. High-resolution magnetograms of Hinode that are available at ~-5.5, -1.5, 1.5, and 4 hrs relative to the flare maximum are used to reconstruct three-dimensional coronal magnetic field under the nonlinear force-free field (NLFFF) assumption. UV and hard X-ray images are also used to illuminate the magnetic field evolution and energy release. The rapid change is mainly detected by HMI in a compact region lying in the center of the magnetic sigmoid, where the mean horizontal field strength exhibited a significant increase by 28%. The region lies between the initial strong UV and hard X-ray sources in the chromosphere, which are cospatial with the central feet of the sigmoid according to the NLFFF model. The NLFFF model further shows that strong coronal currents are concentrated immediately above the region, and that more intriguingly, the coronal current system underwent an apparent downward collapse after the sigmoid eruption. These results are discussed in favor of both the tether-cutting reconnection producing the flare and the ensuing implosion of the coronal field resulting from the energy release.Comment: 7 pages, 5 figures, accepted to the Astrophysical Journal Letter

    Suppressed star formation in circumnuclear regions in Seyfert galaxies

    Full text link
    Feedback from black hole activity is widely believed to play a key role in regulating star formation and black hole growth. A long-standing issue is the relation between the star formation and fueling the supermassive black holes in active galactic nuclei (AGNs). We compile a sample of 57 Seyfert galaxies to tackle this issue. We estimate the surface densities of gas and star formation rates in circumnuclear regions (CNRs). Comparing with the well-known Kennicutt-Schmidt (K-S) law, we find that the star formation rates in CNRs of most Seyfert galaxies are suppressed in this sample. Feedback is suggested to explain the suppressed star formation rates.Comment: 1 color figure and 1 table. ApJ Letters in pres

    Evolution of gaseous disk viscosity driven by supernova explosion in star-forming galaxies at high redshift

    Full text link
    Motivated by Genzel et al.'s observations of high-redshift star-forming galaxies, containing clumpy and turbulent rings or disks, we build a set of equations describing the dynamical evolution of gaseous disks with inclusion of star formation and its feedback. Transport of angular momentum is due to "turbulent" viscosity induced by supernova explosions in the star formation region. Analytical solutions of the equations are found for the initial cases of a gaseous ring and the integrated form for a gaseous disk, respectively. For a ring with enough low viscosity, it evolves in a slow processes of gaseous diffusion and star formation near the initial radius. For a high viscosity, the ring rapidly diffuses in the early phase. The diffusion drives the ring into a region with a low viscosity and start the second phase undergoing pile-up of gas at a radius following the decreased viscosity torque. The third is a sharply deceasing phase because of star formation consumption of gas and efficient transportation of gas inward forming a stellar disk. We apply the model to two z∼2z\sim 2 galaxies BX 482 and BzK 6004, and find that they are undergoing a decline in their star formation activity.Comment: To appear in ApJ, 5 figure

    Star Formation in Self-Gravitating Disks in Active Galactic Nuclei. I. Metallicity Gradients in Broad-Line Regions

    Get PDF
    It has been suggested that the high metallicity generally observed in active galactic nuclei (AGNs) and quasars originates from ongoing star formation in the self-gravitating part of accretion disks around supermassive black holes (SMBHs). We designate this region as the star-forming (SF) disk, in which metals are produced from supernova explosions (SNexp) while at the same time inflows are driven by SNexp-excited turbulent viscosity to accrete onto the SMBHs. In this paper, an equation of metallicity governed by SNexp and radial advection is established to describe the metal distribution and evolution in the SF disk. We find that the metal abundance is enriched at different rates at different positions in the disk, and that a metallicity gradient is set up that evolves for steady-state AGNs. Metallicity as an integrated physical parameter can be used as a probe of the SF disk age during one episode of SMBH activity. In the SF disk, evaporation of molecular clouds heated by SNexp blast waves unavoidably forms hot gas. This heating is eventually balanced by the cooling of the hot gas, but we show that the hot gas will escape from the SF disk before being cooled, and diffuse into the broad-line regions (BLRs) forming with a typical rate of ~1 M☉ yr–1. The diffusion of hot gas from an SF disk depends on ongoing star formation, leading to the metallicity gradients in BLR observed in AGNs. We discuss this and other observable consequences of this scenario

    Episodic Random Accretion and the Cosmological Evolution of Supermassive Black Hole Spins

    Full text link
    The growth of supermassive black holes (BHs) located at the centers of their host galaxies comes mainly from accretion of gas, but how to fuel them remains an outstanding unsolved problem in quasar evolution. This issue can be elucidated by quantifying the radiative efficiency parameter (η\eta) as a function of redshift, which also provides constraints on the average spin of the BHs and its possible evolution with time. We derive a formalism to link η\eta with the luminosity density, BH mass density, and duty cycle of quasars, quantities we can estimate from existing quasar and galaxy survey data. We find that η\eta has a strong cosmological evolution: at z~2, η≈0.3\eta \approx 0.3, and by z≈0z\approx 0 it has decreased by an order of magnitude, to η≈0.03\eta\approx 0.03. We interpret this trend as evolution in BH spin, and we appeal to episodic, random accretion as the mechanism for reducing the spin. The observation that the fraction of radio-loud quasars decreases with increasing redshift is inconsistent with the popular notion that BH spin is a critical factor for generating strong radio jets. In agreement with previous studies, we show that the derived history of BH accretion closely follows the cosmic history of star formation, consistent with other evidence that BHs and their host galaxies coevolve.Comment: 4 page, 2 color figures. Accepted by ApJ

    Star formation in self-gravitating disks in active galactic nuclei. I. Metallicity gradients in broad line regions

    Get PDF
    It has been suggested that the high metallicity generally observed in active galactic nuclei (AGNs) and quasars originates from ongoing star formation in the self-gravitating part of accretion disks around the supermassive black holes. We designate this region as the star forming (SF) disk, in which metals are produced from supernova explosions (SNexp) while at the same time inflows are driven by SNexp-excited turbulent viscosity to accrete onto the SMBHs. In this paper, an equation of metallicity governed by SNexp and radial advection is established to describe the metal distribution and evolution in the SF disk. We find that the metal abundance is enriched at different rates at different positions in the disk, and that a metallicity gradient is set up that evolves for steady-state AGNs. Metallicity as an integrated physical parameter can be used as a probe of the SF disk age during one episode of SMBH activity. In the SF disk, evaporation of molecular clouds heated by SNexp blast waves unavoidably forms hot gas. This heating is eventually balanced by the cooling of the hot gas, but we show that the hot gas will escape from the SF disk before being cooled, and diffuse into the BLRs forming with a typical rate of \sim 1\sunmyr. The diffusion of hot gas from a SF disk depends on ongoing star formation, leading to the metallicity gradients in BLR observed in AGNs. We discuss this and other observable consequences of this scenario.Comment: 11 pages, 5 Figures, ApJ, Vol. 737, in pres

    Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    Get PDF
    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well

    Protective Effects of Total Saponins of Panax Notoginseng on Steroid-Induced Avascular Necrosis of the Femoral Head In Vivo and In Vitro

    Get PDF
    This research was designed to investigate the protective effects of TSPN on steroid-induced avascular necrosis of the femoral head (ANFH) and the likely mechanisms of those effects. As an in vivo study, TSPN was shown to be protective against steroid-induced ANFH due to the upregulation of VEGF-A. Furthermore, TSPN attenuated the apoptosis of osteocytes and reduced the expression of Caspase-3 relative to the model group. As an in vitro study, TSPN exerted a concentration-dependent protective effect against apoptosis in MC3T3-E1 cells. Moreover, TSPN (at a dose of 100 μg/mL) significantly reversed the dexamethasone-induced augmentation of Caspase-3 expression and activity. Therefore, our study demonstrated that TSPN had a protective effect against steroid-induced ANFH that was related to the upregulation of VEGF-A and the inhibition of apoptosis and Caspase-3 activation
    • …
    corecore