2,499 research outputs found

    Protocol for a prospective, observational cohort study of awareness in mechanically ventilated patients admitted from the emergency department: The ED-AWARENESS study

    Get PDF
    INTRODUCTION: Awareness with paralysis is a complication with potentially devastating psychological consequences for mechanically ventilated patients. While rigorous investigation into awareness has occurred for operating room patients, little attention has been paid outside of this domain. Mechanically ventilated patients in the emergency department (ED) have been historically managed in a way that predisposes them to awareness events: high incidence of neuromuscular blockade use, underdosing of analgesia and sedation, delayed administration of analgesia and sedation after intubation, and a lack of monitoring of sedation targets and depth. These practice patterns are discordant to recommendations for reducing the incidence of awareness, suggesting there is significant rationale to examine awareness in the ED population. METHODS AND ANALYSIS: This is a single centre, prospective cohort study examining the incidence of awareness in mechanically ventilated ED patients. A cohort of 383 mechanically ventilated ED patients will be included. The primary outcome is awareness with paralysis. Qualitative reports of all awareness events will be provided. Recognising the potential problem with conventional multivariable analysis arising from a small number of events (expected less than 10-phenomenon of separation), Firth penalised method, exact logistic regression model or penalised maximum likelihood estimation shrinkage (Ridge, LASSO) will be used to assess for predictors of awareness. ETHICS AND DISSEMINATION: Approval of the study by the Human Research Protection Office has been obtained. This work will be disseminated by publication of peer-reviewed manuscripts, presentation in abstract form at scientific meetings and data sharing with other investigators through academically established means

    Recovery from hind limb ischemia is less effective in type 2 than in type 1 diabetic mice: Roles of endothelial nitric oxide synthase and endothelial progenitor cells

    Get PDF
    ObjectiveWe sought to directly compare the effects of type 1 and type 2 diabetes on postischemic neovascularization and evaluate the mechanisms underlying differences between these groups. We tested the hypothesis that type 2 diabetic mice have a greater reduction in endothelial nitric oxide synthase (eNOS) expression, a greater increase in oxidative stress, and reduced arteriogenesis and angiogenesis, resulting in less complete blood flow recovery than type 1 diabetic mice after induction of hind limb ischemia.MethodsHind limb ischemia was generated by femoral artery excision in streptozotocin-treated mice (model of type 1 diabetes), in Leprdb/db mice (model of type 2 diabetes), and in control (C57BL/6) mice. Dependent variables included eNOS expression and markers of arteriogenesis, angiogenesis, and oxidative stress.ResultsPostischemia recovery of hind limb perfusion was significantly less in type 2 than in type 1 diabetic mice; however, neither group demonstrated a significant increase in collateral artery diameter or collateral artery angioscore in the ischemic hind limb. The capillary/myofiber ratio in the gastrocnemius muscle decreased in response to ischemia in control or type 1 diabetic mice but remained the same in type 2 diabetic mice. Gastrocnemius muscle eNOS expression was lower in type 1 and 2 diabetic mice than in control mice. This expression decreased after induction of ischemia in type 2 but not in type 1 diabetic mice. The percentage of endothelial progenitor cells (EPC) in the peripheral blood failed to increase in either diabetic group after induction of ischemia, whereas this variable significantly increased in the control group in response to ischemia. EPC eNOS expression decreased after induction of ischemia in type 1 but not in type 2 diabetic mice. EPC nitrotyrosine accumulation increased after induction of ischemia in type 2 but not in type 1 diabetic mice. EPC migration in response to vascular endothelial growth factor was reduced in type 1 and type 2 diabetic mice vs control mice. EPC incorporation into tubular structures was less effective in type 2 diabetic mice. Extensive fatty infiltration was present in ischemic muscle of type 2 but not in type 1 diabetic mice.ConclusionType 2 diabetic mice displayed a significantly less effective response to hind limb ischemia than type 1 diabetic mice.Clinical RelevanceDiabetes is important in the pathogenesis of peripheral artery disease. The present study demonstrates that the vascular response to acute hind limb ischemia is dependent on the type of diabetes present. Type 2 diabetic mice (Leprdb/db) demonstrated significantly less effective blood flow recovery than type 1 diabetic mice (streptozotocin-induced). Moreover, the differences between diabetic groups appeared contingent, at least in part, on differences in endothelial nitric oxide, oxidant stress, and endothelial progenitor cell function between the two diabetic groups. Although direct extrapolation of animal data to the human experience must be made with caution, these findings indicate that the type of diabetes present, and not just the presence of diabetes per se, may be important in the initiation of progression of peripheral artery disease

    A study protocol for a multicentre, prospective, before-and-after trial evaluating the feasibility of implementing targeted SEDation after initiation of mechanical ventilation in the emergency department (The ED-SED Pilot Trial)

    Get PDF
    INTRODUCTION: Sedation is a cornerstone therapy in the management of patients receiving mechanical ventilation and is highly influential on outcome. Early sedation depth appears especially influential, as early deep sedation is associated with worse outcome when compared with light sedation. Our research group has shown that patients receiving mechanical ventilation in the emergency department (ED) are exposed to deep sedation commonly, and ED sedation depth is impactful on intensive care unit (ICU) care and clinical outcomes. While extensive investigation has occurred for patients in the ICU, comparatively little data exist from the ED. Given the influence that ED sedation seems to carry, as well as a lack of ED-based sedation trials, there is significant rationale to investigate ED-based sedation as a means to improve outcome. METHODS AND ANALYSIS: This is a multicentre (n=3) prospective, before-and-after pilot trial examining the feasibility of implementing targeted sedation in the immediate postintubation period in the ED. A cohort of 344 patients receiving mechanical ventilation in ED will be included. Feasibility outcomes include: (1) participant recruitment; (2) proportion of Richmond Agitation-Sedation Scale (RASS) scores in the deep sedation range; (3) reliability (agreement) of RASS measurements performed by bedside ED nurses; and (4) adverse events. The proportion of deep sedation measurements before and after the intervention will be compared using the χ ETHICS AND DISSEMINATION: The Human Research Protection Office at Washington University in St. Louis School of Medicine has approved the study. The publication of peer-reviewed manuscripts and the presentation of abstracts at scientific meetings will be used to disseminate the work. REGISTRATION: ClinicalTrials.gov identifier NCT04410783; Pre-results

    Pituitary Adenylate-Cyclase Activating Polypeptide Regulates Hunger- and Palatability-Induced Binge Eating

    Get PDF
    While pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the hypothalamic ventromedial nuclei (VMN) has been shown to regulate feeding, a challenge in unmasking a role for this peptide in obesity is that excess feeding can involve numerous mechanisms including homeostatic (hunger) and hedonic-related (palatability) drives. In these studies, we first isolated distinct feeding drives by developing a novel model of binge behavior in which homeostatic-driven feeding was temporally separated from feeding driven by food palatability. We found that stimulation of the VMN, achieved by local microinjections of AMPA, decreased standard chow consumption in food-restricted rats (e.g., homeostatic feeding); surprisingly, this manipulation failed to alter palatable food consumption in satiated rats (e.g., hedonic feeding). In contrast, inhibition of the nucleus accumbens (NAc), through local microinjections of GABA receptor agonists baclofen and muscimol, decreased hedonic feeding without altering homeostatic feeding. PACAP microinjections produced the site-specific changes in synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP to potentially curb excessive eating stemming from either drive

    Awareness with paralysis and symptoms of post-traumatic stress disorder among mechanically ventilated emergency department survivors (ED-AWARENESS-2 Trial): study protocol for a pragmatic, multicenter, stepped wedge cluster randomized trial.

    Get PDF
    BACKGROUND: Awareness with paralysis (AWP) is memory recall during neuromuscular blockade (NMB) and can cause significant psychological harm. Decades of effort and rigorous trials have been conducted to prevent AWP in the operating room, where prevalence is 0.1-0.2%. By contrast, AWP in mechanically ventilated emergency department (ED) patients is common, with estimated prevalence of 3.3-7.4% among survivors given NMB. Longer-acting NMB use is a critical risk for AWP, and we have shown an association between ED rocuronium use and increased AWP prevalence. As NMB are given to more than 90% of ED patients during tracheal intubation, this trial provides a platform to test an intervention aimed at reducing AWP. The overall objective is to test the hypothesis that limiting ED rocuronium exposure will significantly reduce the proportion of patients experiencing AWP. METHODS: This is a pragmatic, stepped wedge cluster randomized trial conducted in five academic EDs, and will enroll 3090 patients. Per the design, all sites begin in a control phase, under observational conditions. At 6-month intervals, sites sequentially enter a 2-month transition phase, during which we will implement the multifaceted intervention, which will rely on use of nudges and defaults to change clinician decisions regarding ED NMB use. During the intervention phase, succinylcholine will be the default NMB over rocuronium. The primary outcome is AWP, assessed with the modified Brice questionnaire, adjudicated by three independent, blinded experts. The secondary outcome is the proportion of patients developing clinically significant symptoms of post-traumatic stress disorder at 30 and 180 days after hospital discharge. We will also assess for symptoms of depression and anxiety, and health-related quality of life. A generalized linear model, adjusted for time and cluster interactions, will be used to compare AWP in control versus intervention phases, analyzed by intention-to-treat. DISCUSSION: The ED-AWARENESS-2 Trial will be the first ED-based trial aimed at preventing AWP, a critical threat to patient safety. Results could shape clinical use of NMB in the ED and prevent more than 10,000 annual cases of AWP related to ED care. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT05534243 . Registered 06, September 2022

    The DEEP2 Galaxy Redshift Survey: Clustering of Groups and Group Galaxies at z~1

    Full text link
    We study the clustering properties of groups and of galaxies in groups in the DEEP2 Galaxy Redshift Survey dataset at z~1. Four clustering measures are presented: 1) the group correlation function for 460 groups with estimated velocity dispersions of sigma>200 km/s, 2) the galaxy correlation for the full galaxy sample, using a flux-limited sample of 9800 objects between 0.7<z<1.0, 3) the galaxy correlation for galaxies in groups, and 4) the group-galaxy cross-correlation function. Using the observed number density and clustering amplitude of the groups, the estimated minimum group dark matter halo mass is M_min~6 10^12 h^-1 M_Sun for a flat LCDM cosmology. Groups are more clustered than galaxies, with a relative bias of b=1.7 +/-0.04 on scales r_p=0.5-15 Mpc/h. Galaxies in groups are also more clustered than the full galaxy sample, with a scale-dependent relative bias which falls from b~2.5 +/-0.3 at r_p=0.1 Mpc/h to b~1 +/-0.5 at r_p=10 Mpc/h. The correlation functions for all galaxies and galaxies in groups can be fit by a power-law on scales r_p=0.05-20 Mpc/h. We empirically measure the contribution to the projected correlation function for galaxies in groups from a `one-halo' term and a `two-halo' term by counting pairs of galaxies in the same or in different groups. The projected cross-correlation between shows that red galaxies are more centrally concentrated in groups than blue galaxies at z~1. DEEP2 galaxies in groups appear to have a shallower radial distribution than that of mock galaxy catalogs made from N-body simulations, which assume a central galaxy surrounded by satellite galaxies with an NFW profile. We show that the clustering of galaxies in groups can be used to place tighter constraints on the halo model than can be gained from using the usual galaxy correlation function alone.Comment: 22 pages, 12 figures, in emulateapj format, accepted to ApJ, minor changes made to match published versio
    corecore