751 research outputs found
Maternal BMI as a predictor of methylation of obesity-related genes in saliva samples from preschool-age Hispanic children at-risk for obesity.
BackgroundThe study of epigenetic processes and mechanisms present a dynamic approach to assess complex individual variation in obesity susceptibility. However, few studies have examined epigenetic patterns in preschool-age children at-risk for obesity despite the relevance of this developmental stage to trajectories of weight gain. We hypothesized that salivary DNA methylation patterns of key obesogenic genes in Hispanic children would 1) correlate with maternal BMI and 2) allow for identification of pathways associated with children at-risk for obesity.ResultsGenome-wide DNA methylation was conducted on 92 saliva samples collected from Hispanic preschool children using the Infinium Illumina HumanMethylation 450Â K BeadChip (Illumina, San Diego, CA, USA), which interrogates >484,000 CpG sites associated with ~24,000 genes. The analysis was limited to 936 genes that have been associated with obesity in a prior GWAS Study. Child DNA methylation at 17 CpG sites was found to be significantly associated with maternal BMI, with increased methylation at 12 CpG sites and decreased methylation at 5 CpG sites. Pathway analysis revealed methylation at these sites related to homocysteine and methionine degradation as well as cysteine biosynthesis and circadian rhythm. Furthermore, eight of the 17 CpG sites reside in genes (FSTL1, SORCS2, NRF1, DLC1, PPARGC1B, CHN2, NXPH1) that have prior known associations with obesity, diabetes, and the insulin pathway.ConclusionsOur study confirms that saliva is a practical human tissue to obtain in community settings and in pediatric populations. These salivary findings indicate potential epigenetic differences in Hispanic preschool children at risk for pediatric obesity. Identifying early biomarkers and understanding pathways that are epigenetically regulated during this critical stage of child development may present an opportunity for prevention or early intervention for addressing childhood obesity.Trial registrationThe clinical trial protocol is available at ClinicalTrials.gov ( NCT01316653 ). Registered 3 March 2011
Structural racism and odds for infant mortality among infants born in the United States 2010
Abstract OBJECTIVES:
While ecological studies indicate that high levels of structural racism within US states are associated with elevated infant mortality rates, studies using individual-level data are needed. To determine whether indicators of structural racism are associated with the individual odds for infant mortality among white and black infants in the US. METHODS:
We used data on 2,163,096 white and 590,081 black infants from the 2010 US Cohort Linked Birth/Infant Death Data Files. Structural racism indicators were ratios of relative proportions of blacks to whites for these domains: electoral (registered to vote and voted; state legislature representation), employment (civilian labor force; employed; in management; with a bachelor\u27s degree), and justice system (sentenced to death; incarcerated). Multilevel logistic regression was used to determine whether structural racism indicators were risk factors of infant mortality. RESULTS:
Compared to the lowest tertile ratio of relative proportions of blacks to whites with a bachelor\u27s degree or higher-indicative of low structural racism-black infants, but not whites, in states with moderate (OR = 1.12, 95% CI = 0.94, 1.32) and high tertiles (OR = 1.25, 95% CI = 1.03, 1.51) had higher odds of infant mortality. CONCLUSIONS:
Educational and judicial indicators of structural racism were associated with infant mortality among blacks. Decreasing structural racism could prevent black infant deaths
Culex tarsalis is a competent vector species for Cache Valley virus
Background: Cache Valley virus (CVV) is a mosquito-borne orthobunyavirus endemic in North America. The virus is
an important agricultural pathogen leading to abortion and embryonic lethality in ruminant species, especially
sheep. The importance of CVV in human public health has recently increased because of the report of severe
neurotropic diseases. However, mosquito species responsible for transmission of the virus to humans remain to be
determined. In this study, vector competence of three Culex species mosquitoes of public health importance, Culex
pipiens, Cx. tarsalis and Cx. quinquefasciatus, was determined in order to identify potential bridge vector species
responsible for the transmission of CVV from viremic vertebrate hosts to humans.
Results: Variation of susceptibility to CVV was observed among selected Culex species mosquitoes tested in this
study. Per os infection resulted in the establishment of infection and dissemination in Culex tarsalis, whereas Cx.
pipiens and Cx. quinquefasciatus were highly refractory to CVV. Detection of viral RNA in saliva collected from
infected Cx. tarsalis provided evidence supporting its role as a competent vector.
Conclusions: Our study provided further understanding of the transmission cycles of CVV and identifies Cx. tarsalis
as a competent vector
Type 2 Diabetes Impairs the Ability of Skeletal Muscle Pericytes to Augment Postischemic Neovascularization in db/db Mice
Peripheral artery disease is an atherosclerotic occlusive disease that causes limb ischemia and has few effective noninterventional treatments. Stem cell therapy is promising, but concomitant diabetes may limit its effectiveness. We evaluated the therapeutic potential of skeletal muscle pericytes to augment postischemic neovascularization in wild-type and type 2 diabetic (T2DM) mice. Wild-type C57BL/6J and leptin receptor spontaneous mutation db/db T2DM mice underwent unilateral femoral artery excision to induce limb ischemia. Twenty-four hours after ischemia induction, CD45-CD34-CD146+ skeletal muscle pericytes or vehicle controls were transplanted into ischemic hindlimb muscles. At postoperative day 28, pericyte transplantation augmented blood flow recovery in wild-type mice (79.3 ± 5% vs. 61.9 ± 5%; P = 0.04), but not in T2DM mice (48.6% vs. 46.3 ± 5%; P = 0.51). Pericyte transplantation augmented collateral artery enlargement in wild-type (26.7 ± 2 µm vs. 22.3 ± 1 µm, P = 0.03), but not T2DM mice (20.4 ± 1.4 µm vs. 18.5 ± 1.2 µm, P = 0.14). Pericyte incorporation into collateral arteries was higher in wild-type than in T2DM mice (P = 0.002). Unexpectedly, pericytes differentiated into Schwann cells in vivo. In vitro, Insulin increased Nox2 expression and decreased tubular formation capacity in human pericytes. These insulin-induced effects were reversed by N-acetylcysteine antioxidant treatment. In conclusion, T2DM impairs the ability of pericytes to augment neovascularization via decreased collateral artery enlargement and impaired engraftment into collateral arteries, potentially via hyperinsulinemia-induced oxidant stress. While pericytes show promise as a unique form of stem cell therapy to increase postischemic neovascularization, characterizing the molecular mechanisms by which T2DM impairs their function is essential to achieve their therapeutic potential
A Network of Multi-Tasking Proteins at the DNA Replication Fork Preserves Genome Stability
To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions) whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics
Prognostic and predictive value of circulating tumor cells and CXCR4 expression as biomarkers for a CXCR4 peptide antagonist in combination with carboplatin-etoposide in small cell lung cancer: exploratory analysis of a phase II study.
Background Circulating tumor cells (CTCs) and chemokine (C-X-C motif) receptor 4 (CXCR4) expression in CTCs and tumor tissue were evaluated as prognostic or predictive markers of CXCR4 peptide antagonist LY2510924 plus carboplatin-etoposide (CE) versus CE in extensive-stage disease small cell lung cancer (ED-SCLC). Methods This exploratory analysis of a phase II study evaluated CXCR4 expression in baseline tumor tissue and peripheral blood CTCs and in post-treatment CTCs. Optimum cutoff values were determined for CTC counts and CXCR4 expression in tumors and CTCs as predictors of survival outcome. Kaplan-Meier estimates and hazard ratios were used to determine biomarker prognostic and predictive values. Results There was weak positive correlation at baseline between CXCR4 expression in tumor tissue and CTCs. Optimum cutoff values were H-score ≥ 210 for CXCR4+ tumor, ≥7% CTCs with CXCR4 expression (CXCR4+ CTCs), and ≥6 CTCs/7.5 mL blood. Baseline H-score for CXCR4+ tumor was not prognostic of progression-free survival (PFS) or overall survival (OS). Baseline CXCR4+ CTCs ≥7% was prognostic of shorter PFS. CTCs ≥6 at baseline and cycle 2, day 1 were prognostic of shorter PFS and OS. None of the biomarkers at their respective optimum cutoffs was predictive of treatment response of LY2510924 plus CE versus CE. Conclusions In patients with ED-SCLC, baseline CXCR4 expression in tumor tissue was not prognostic of survival or predictive of LY2510924 treatment response. Baseline CXCR4+ CTCs ≥7% was prognostic of shorter PFS. CTC count ≥6 at baseline and after 1 cycle of treatment were prognostic of shorter PFS and OS
Improving the coverage and accuracy of syphilis testing: The development of a novel rapid, point-of-care test for confirmatory testing of active syphilis infection and its early evaluation in China and South Africa
Background: Current point-of-care tests (POCT) for syphilis, based on the detection of Treponema pallidum (TP) total antibodies, have limited capacity in distinguishing between active and past/treated syphilis. We report the development and early evaluation of a new prototype POCT based on the detection of TP-IgA antibodies, a novel biomarker for active syphilis.
Methods: The TP-IgA POCT (index test) was developed in response to the World Health Organisation (WHO) target product profile (TPP) for a POCT for confirmatory syphilis testing. Two sub-studies were conducted consecutively using 458 pre-characterised stored plasma samples in China (sub-study one, addressing the criteria for the WHO TPP), and 503 venous blood samples collected from pregnant/postpartum women in South Africa (sub-study two, addressing potential clinical utility). Performance of the index test was assessed against standard laboratory-based serology using a combination of treponemal (TPHA) and non-treponemal (rapid plasma reagin [RPR]) tests.
Findings: In sub-study one, the index test demonstrated 96·1% (95%CI=91·7%-98·5%) sensitivity and 84·7% (95%CI=80·15–88·6%) specificity for identification of active syphilis (TPHA positive, RPR positive). It correctly identified 71% (107/150) samples of past-treated syphilis (TPHA positive, RPR negative). In sub-study two, the index test achieved 100% (95%CI=59%-100%) sensitivity for active syphilis and correctly identified all nine women with past syphilis.
Interpretation: The TP-IgA POCT has met the WHO TPP for a POCT for diagnosis of active syphilis and demonstrated its potential utility in a clinical setting. Future studies are warranted to evaluate field performance of the final manufactured test.
Funding: Saving Lives at Birth: Grand Challenge for Development, Thrasher Research Fund, and the Victorian Government Operational Infrastructure Scheme
SDSS-IV MaNGA: Evidence for enriched accretion onto satellite galaxies in dense environments
We investigate the environmental dependence of the local gas-phase
metallicity in a sample of star-forming galaxies from the MaNGA survey.
Satellite galaxies with stellar masses in the range ) centrals are more metal rich than satellites of low-mass () centrals, controlling for local stellar mass surface density and gas fraction. Fitting a gas-regulator model to the spaxel data, we are able to account for variations in the local gas fraction, stellar mass surface density and local escape velocity-dependent outflows. We find that the best explanation for the metallicity differences is the variation in the average metallicity of accreted gas between different environments that depends on the stellar mass of the dominant galaxies in each halo. This is interpreted as evidence for the exchange of enriched gas between galaxies in dense environments that is predicted by recent simulations
Infection and transmission of Cache Valley virus by Aedes albopictus and Aedes aegypti mosquitoes
Background:
Cache Valley virus (CVV; Bunyavirales, Peribunyaviridae) is a mosquito-borne arbovirus endemic in North America. Although severe diseases are mainly observed in pregnant ruminants, CVV has also been recognized as a zoonotic pathogen that can cause fatal encephalitis in humans. Human exposures to CVV and its related subtypes occur frequently under different ecological conditions in the New World; however, neurotropic disease is rarely reported. High prevalence rates of neutralizing antibodies have been detected among residents in several Latin American cities. However, zoophilic mosquito species involved in the enzootic transmission are unlikely to be responsible for the transmission leading to human exposures to CVV. Mechanisms that lead to frequent human exposures to CVV remain largely unknown. In this study, competence of two anthropophilic mosquitoes, Aedes albopictus and Ae. aegypti, for CVV was determined using per os infection to determine if these species could play a role in the transmission of CVV in the domestic and peridomestic settings of urban and suburban areas.
Results:
Aedes albopictus were highly susceptible to CVV whereas infection of Ae. aegypti occurred at a significantly lower frequency. Whilst the dissemination rates of CVV were comparable in the two species, the relatively long period to attain maximal infectious titer in Ae. aegypti demonstrated a significant difference in the replication kinetics of CVV in these species. Detection of viral RNA in saliva suggests that both Ae. albopictus and Ae. aegypti are competent vectors for CVV under laboratory conditions.
Conclusions:
Differential susceptibility to CVV was observed in Ae. albopictus and Ae. aegypti, reflecting their relatively different capacities for vectoring CVV in nature. The high susceptibility of Ae. albopictus to CVV observed in this study suggests its potential role as an efficient vector for CVV. Complemented by the reports of multiple CVV isolates derived from Ae. albopictus, our finding provides the basis for how the dispersal of Ae. albopictus across the New World may have a significant impact on the transmission and ecology of CVV
1000 Norms Project: Protocol of a cross-sectional study cataloging human variation
Background Clinical decision-making regarding diagnosis and management largely depends on comparison with healthy or ‘normal’ values. Physiotherapists and researchers therefore need access to robust patient-centred outcome measures and appropriate reference values. However there is a lack of high-quality reference data for many clinical measures. The aim of the 1000 Norms Project is to generate a freely accessible database of musculoskeletal and neurological reference values representative of the healthy population across the lifespan. Methods/design In 2012 the 1000 Norms Project Consortium defined the concept of ‘normal’, established a sampling strategy and selected measures based on clinical significance, psychometric properties and the need for reference data. Musculoskeletal and neurological items tapping the constructs of dexterity, balance, ambulation, joint range of motion, strength and power, endurance and motor planning will be collected in this cross-sectional study. Standardised questionnaires will evaluate quality of life, physical activity, and musculoskeletal health. Saliva DNA will be analysed for the ACTN3 genotype (‘gene for speed’). A volunteer cohort of 1000 participants aged 3 to 100 years will be recruited according to a set of self-reported health criteria. Descriptive statistics will be generated, creating tables of mean values and standard deviations stratified for age and gender. Quantile regression equations will be used to generate age charts and age-specific centile values. Discussion This project will be a powerful resource to assist physiotherapists and clinicians across all areas of healthcare to diagnose pathology, track disease progression and evaluate treatment response. This reference dataset will also contribute to the development of robust patient-centred clinical trial outcome measures
- …