16 research outputs found

    The Neurotropic Parasite Toxoplasma Gondii Increases Dopamine Metabolism

    Get PDF
    The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s) responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists) and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans

    MEKK1-MKK4-JNK-AP1 Pathway Negatively Regulates Rgs4 Expression in Colonic Smooth Muscle Cells

    Get PDF
    Background: Regulator of G-protein Signaling 4 (RGS4) plays an important role in regulating smooth muscle contraction, cardiac development, neural plasticity and psychiatric disorder. However, the underlying regulatory mechanisms remain elusive. Our recent studies have shown that upregulation of Rgs4 by interleukin (IL)-1b is mediated by the activation of NFkB signaling and modulated by extracellular signal-regulated kinases, p38 mitogen-activated protein kinase, and phosphoinositide-3 kinase. Here we investigate the effect of the c-Jun N-terminal kinase (JNK) pathway on Rgs4 expression in rabbit colonic smooth muscle cells. Methodology/Principal Findings: Cultured cells at first passage were treated with or without IL-1b (10 ng/ml) in the presence or absence of the selective JNK inhibitor (SP600125) or JNK small hairpin RNA (shRNA). The expression levels of Rgs4 mRNA and protein were determined by real-time RT-PCR and Western blot respectively. SP600125 or JNK shRNA increased Rgs4 expression in the absence or presence of IL-1b stimulation. Overexpression of MEKK1, the key upstream kinase of JNK, inhibited Rgs4 expression, which was reversed by co-expression of JNK shRNA or dominant-negative mutants for MKK4 or JNK. Both constitutive and inducible upregulation of Rgs4 expression by SP600125 was significantly inhibited by pretreatment with the transcription inhibitor, actinomycin D. Dual reporter assay showed that pretreatment with SP600125 sensitized the promoter activity of Rgs4 in response to IL-1b. Mutation of the AP1-binding site within Rgs

    Activation of MAP kinases and phosphorylation of caldesmon in canine colonic smooth muscle

    No full text
    1. Phosphorylation of caldesmon was assayed in canine colonic circular smooth muscle strips labelled with P-32 and stimulated with 10 mu M acetylcholine. Caldesmon was isolated by two-dimensional non-equilibrium pH gel electrophoresis. Stimulation with acetylcholine increased caldesmon phosphorylation significantly from a basal level of 0.6 +/- 0.07 to 1.1 +/- 0.15 mol P-i (mol caldesmon)(-1) after 2 min.2. MAP kinase activities were measured in SDS extracts of muscle by a gel reconstitution method using myelin basic protein. Myelin basic protein kinase activities were observed at 38, 44, 50 and 57 kDa by the gel reconstitution method. Endogenous caldesmon kinase activities were also identified by the gel reconstitution method at 38, 44 and 50 kDa. The 38 and 44 kDa kinases comigrated with proteins labelled by anti-ERK1 MAP liinase antibodies on Western blots. Both 38 and 44 kDa MBP kinase activities increased significantly during contractions induced by 10 mu M acetylcholine, 0.1 mu M neurokinin A and 70 mM potassium.3. Phorbol dibutyrate (0.1 mu M) potentiated activation of MAP kinases and contraction of depolarized muscles while producing a decrease in fura-2 fluorescence ratio. This suggests that protein liinase C activation is coupled to MAP kinase activity in colonic smooth muscle.4. MAP kinases isolated from muscle homogenates by Mono &amp; chromatography were assayed using the specific MAP kinase substrate peptide APRTPGGRR. Stimulation of muscles for 2 min with 10 mu M acetylcholine activated both ERK1 and ERK2 MAP kinase activities 2-fold.5. To determine the effects of caldesmon phosphorylation by MAP kinase on the cross-bridge cycle, actin sliding velocity was measured with an in vitro motility assay, Unphosphorylated turkey gizzard caldesmon (3 mu M) significantly reduced mean sliding velocity. Phosphorylation of caldesmon with sea star ERK1 MAP kinase reversed the inhibitory effect of caldesmon on sliding velocity. The results are consistent with a protein kinase cascade being activated by contractile agonists in gastrointestinal smooth muscle which activates ERK MAP kinases leading to phosphorylation of caldesmon. Phosphorylation of caldesmon in viveo may reverse inhibitory influences of caldesmon on cross-bridge cycling.</p

    Chimeric Vitronectin : Insulin-like Growth Factor Proteins Enhance Cell Growth and Migration through Co-Activation of Receptors

    Get PDF
    Complexes comprised of IGF-I, IGF-binding proteins and the ECM protein vitronectin (VN) stimulate cell migration and growth and can replace the requirement for serum for the ex vivo expansion of cells, as well as promote wound healing in vivo. Moreover, the activity of the complexes is dependent on co-activation of the IGF-I receptor and VN-binding integrins. In view of this we sought to develop chimeric proteins able to recapitulate the action of the multiprotein complex within a single molecular species. We report here the production of two recombinant chimeric proteins, incorporating domains of VN linked to IGF-I, which mimic the functions of the complex. Further, the activity of the chimeric proteins is dependent on co-activation of the IGF-I- and VN-binding cell surface receptors. Clearly the use of chimeras that mimic the activity of growth factor:ECM complexes, such as these, offer manufacturing advantages that ultimately will facilitate translation to cost-effective therapies
    corecore