1,024 research outputs found
Extremely strong-coupling superconductivity and anomalous lattice properties in the beta-pyrochlore oxide KOs2O6
Superconducting and normal-state properties of the beta-pyrochlore oxide
KOs2O6 are studied by means of thermodynamic and transport measurements. It is
shown that the superconductivity is of conventional s-wave type and lies in the
extremely strong-coupling regime. Specific heat and resistivity measurements
reveal that there are characteristic low-energy phonons that give rise to
unusual scattering of carriers due to strong electron-phonon interactions. The
entity of the low-energy phonons is ascribed to the heavy rattling of the K ion
confined in an oversized cage made of OsO6 octahedra. It is suggested that this
electron-rattler coupling mediates the Cooper pairing, resulting in the
extremely strong-coupling superconductivity.Comment: 17 pages (only 4 pages included here. go to
http://hiroi.issp.u-tokyo.ac.jp/Published%20papers/K-SC6.pdf for full pages),
to be published in PR
Vortex Redistribution below the First-Order Transition Temperature in the \beta-Pyrochlore Superconductor KOs_2O_6
A miniature Hall sensor array was used to detect magnetic induction locally
in the vortex states of the -pyrochlore superconductor KOsO.
Below the first-order transition at K, which is associated
with a change in the rattling motion of K ions, the lower critical field and
the remanent magnetization both show a distinct decrease, suggesting that the
electron-phonon coupling is weakened below the transition. At high magnetic
fields, the local induction shows an unexpectedly large jump at
whose sign changes with position inside the sample. Our results demonstrate a
novel redistribution of vortices whose energy is reduced abruptly below the
first-order transition at .Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let
Effects of Rattling Phonons on the Quasiparticle Excitation and Dynamics in the Superconducting -Pyrochlore KOsO
Microwave penetration depth and surface resistance at 27 GHz are
measured in high quality crystals of KOsO. Firm evidence for
fully-gapped superconductivity is provided from . Below the second
transition at K, the superfluid density shows a step-like
change with a suppression of effective critical temperature .
Concurrently, the extracted quasiparticle scattering time shows a steep
enhancement, indicating a strong coupling between the anomalous rattling motion
of K ions and quasiparticles. The results imply that the rattling phonons help
to enhance superconductivity, and that K sites freeze to an ordered state with
long quasiparticle mean free path below .Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let
Structural Phase Transition in the Superconducting Pyrochlore Oxide Cd2Re2O7
We report a structural phase transition found at Ts = 200 K in a pyrochlore
oxide Cd2Re2O7 which shows superconductivity at Tc = 1.0 K. X-ray
diffractionexperiments indicate that the phase transition is of the second
order, from a high-temperature phase with the ideal cubic pyrochlore structure
(space group Fd-3m) to a low-temperature phase with another cubic structure
(space group F-43m). It is accompanied by a dramatic change in the resistivity
and magnetic susceptibility and thus must induce a significant change in the
electronic structure of Cd2Re2O7.Comment: 4 pages, 4figures, proceeding for ISSP
Phonon Dynamics and Multipolar Isomorphic Transition in beta-pyrochlore KOs2O6
We investigate with a microscopic model anharmonic K-cation oscillation
observed by neutron experiments in beta-pyrochlore superconductor KOs2O6, which
also shows a mysterious first-order structural transition at Tp=7.5 K. We have
identified a set of microscopic model parameters that successfully reproduce
the observed temperature dependence and the superconducting transition
temperature. Considering changes in the parameters at Tp, we can explain
puzzling experimental results about electron-phonon coupling and neutron data.
Our analysis demonstrates that the first-order transition is multipolar
transition driven by the octupolar component of K-cation oscillations. The
octupole moment does not change the symmetry and is characteristic to
noncentrosymmetric K-cation potential.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp
- …