4,923 research outputs found
Exploration of Finite 2D Square Grid by a Metamorphic Robotic System
We consider exploration of finite 2D square grid by a metamorphic robotic
system consisting of anonymous oblivious modules. The number of possible shapes
of a metamorphic robotic system grows as the number of modules increases. The
shape of the system serves as its memory and shows its functionality. We
consider the effect of global compass on the minimum number of modules
necessary to explore a finite 2D square grid. We show that if the modules agree
on the directions (north, south, east, and west), three modules are necessary
and sufficient for exploration from an arbitrary initial configuration,
otherwise five modules are necessary and sufficient for restricted initial
configurations
Overdoped Cuprates With High Temperature Superconducting Transitions
Evidence for High Tc cuprate superconductivity is found in a region of the
phase diagram where non-superconducting Fermi liquid metals are expected. Cu
valences estimated independently from both x-ray absorption near-edge structure
(XANES) and bond valence sum (BVS) measurements are > 2.3 for structures in the
homologous series (Cu0.75Mo0.25)Sr2(Y,Ce)sCu2O5+2s+{\delta} with s = 1, 2, 3,
and 4. The s = 1 member, (Cu0.75Mo0.25)Sr2YCu2O7+{\delta}, 0 \leq {\delta} \leq
0.5, is structurally related to YBa2Cu3O7 in which 25% of the basal Cu cations
[i.e. those in the chain layer] are replaced by Mo, and the Ba cations are
replaced by Sr. After oxidation under high pressure the s = 1 member becomes
superconducting with Tc = 88K. The Cu valence is estimated to be ~2.5, well
beyond the ~2.3 value for which other High-Tc cuprates are considered to be
overdoped Fermi liquids. The increase in valence is attributed to the
additional 0.5 oxygen ions added per chain upon oxidation. The record short
apical oxygen distance, at odds with current theory, suggests the possibility
of a new pairing mechanism but further experiments are urgently needed to
obtain more direct evidence. From the structural point of view the members with
s \geq 2 are considered to be equivalent to single-layer cuprates. All have Tc
~ 56 K which is significantly higher than expected because they also have
higher than expected Cu valences. The XANES-determined valences normalized to
give values in the CuO2 layers are 2.24, 2.25, and 2.26 for s = 2, 3, and 4,
while the BVS values determined for the valence in the CuO2 layer alone are
2.31-2.34 for the s = 2 and 3 members. No evidence for periodic ordering has
been detected by electron diffraction and high resolution imaging studies. The
possibility that the charge reservoir layers are able to screen long range
coulomb interactions and thus enhance Tc is discussed
Sensor Reduction for Backing-Up Control of a Vehicle With Triple Trailers
This paper presents a cost-effective design based on sensor reduction for backing-up control of a vehicle with triple trailers. To realize a cost-effective design, we newly derive two linear-matrix-inequality (LMI) conditions for a discrete Takagi-Sugeno fuzzy system. One is an optimal dynamic output feedback design that guarantees desired control performance. The other is an avoidance of jackknife phenomenon for the use of the optimal dynamic output feedback controller. Our results demonstrate that the proposed LMI-based design effectively achieves the backing-up control of the vehicle with triple trailers while avoiding the jackknife phenomenon. More importantly, we demonstrate that the designed optimal control can achieve the backing-up control without, at least, two potentiometers that were employed to measure the relative angles (of a vehicle with triple trailers) in our previous experiments. Since the relative angles directly relate to the jackknife phenomenon, the successful control results without two potentiometers are very interesting and important from the cost-effective design point of view
Dense ion clouds of 0.1 ? 2 keV ions inside the CPS-region observed by Astrid-2
International audienceData from the Astrid-2 satellite taken between April and July 1999 show several examples of dense ion clouds in the 0.1?2 keV energy range inside the inner mag-netosphere, both in the northern and southern hemispheres. These inner magnetospheric ion clouds are found predomi-nantly in the early morning sector, suggesting that they could have originated from substorm-related ion injections on the night side. However, their location and density show no cor-relation with Kp, and their energy-latitude dispersion is not easily reproduced by a simple particle drift model. There-fore, these ion clouds are not necessarily caused by substorm-related ion injections. Alternative explanations for the ion clouds are the direct solar wind injections and up-welling ions from the other hemisphere. These explanations do not, however, account for all of the observations
High-Tc Superconducting Cuprates, (Ce,Y)sO2s-2Sr2(Cu2.75Mo0.25 )O6+[delta] : Tc-increase with apical Cu-O decrease at constant Cu-O planar distance
Evidence for high-Tc cuprate superconductivity is found in a region of the phase diagram where non-superconducting Fermi liquid metals are expected. Cu valences estimated independently from both XANES measurements and bond valence sum calculations are greater than 2.25 and are in close agreement with each other for structures of the homologous series given in the title with s = 1, 2, 3, 4 and 5. Two questions arise from the present perspective: 1) Is all the action in the CuO2 layers? 2) Is there superconductivity beyond the usual dome? The record short apical oxygen distance found in the homologous series especially in the s = 1 member, at odds with the current theory, suggests the possibility of a new pairing mechanism. The apical Cu-O distance in the s = 1 member decreases upon oxygenation from 2.29 to 2.15 dot A while the Cu valence increases to 2.45 dot A.Peer reviewe
Magnetic Phase Diagrams with Possible Field-induced Antiferroquadrupolar Order in TbBC
Magnetic phase diagrams of a tetragonal antiferromagnet TbBC were
clarified by temperature and field dependence of magnetization. It is
noticeable that the N{\'e}el temperature in TbBC is anomalously
enhanced with magnetic fields, in particular the enhancement reaches 13.5 K for
the direction at 10 T. The magnetization processes as well as the
phase diagrams are well interpreted assuming that there appear field-induced
antiferroquadrupolar ordered phases in TbBC. The phase diagrams of the
AFQ compounds in RBC are systematically understood in terms of the
competition with AFQ and AFM interactions.Comment: 4 pages, 4 figures, RevTeX
Chandra HETGS Multi-Phase Spectroscopy of the Young Magnetic O Star theta^1 Orionis C
We report on four Chandra grating observations of the oblique magnetic
rotator theta^1 Ori C (O5.5 V) covering a wide range of viewing angles with
respect to the star's 1060 G dipole magnetic field. We employ line-width and
centroid analyses to study the dynamics of the X-ray emitting plasma in the
circumstellar environment, as well as line-ratio diagnostics to constrain the
spatial location, and global spectral modeling to constrain the temperature
distribution and abundances of the very hot plasma. We investigate these
diagnostics as a function of viewing angle and analyze them in conjunction with
new MHD simulations of the magnetically channeled wind shock mechanism on
theta^1 Ori C. This model fits all the data surprisingly well, predicting the
temperature, luminosity, and occultation of the X-ray emitting plasma with
rotation phase.Comment: 52 pages, 14 figures (1 color), 6 tables. To appear in the
Astrophysical Journal, 1 August 2005, v628, issue 2. New version corrects
e-mail address, figure and table formatting problem
Electrochemical synthesis of mesoporous gold films toward mesospace-stimulated optical properties
Mesoporous gold (Au) films with tunable pores are expected to provide fascinating optical properties stimulated by the mesospaces, but they have not been realized yet because of the difficulty of controlling the Au crystal growth. Here, we report a reliable soft-templating method to fabricate mesoporous Au films using stable micelles of diblock copolymers, with electrochemical deposition advantageous for precise control of Au crystal growth. Strong field enhancement takes place around the center of the uniform mesopores as well as on the walls between the pores, leading to the enhanced light scattering as well as surface-enhanced Raman scattering (SERS), which is understandable, for example, from Babinet principles applied for the reverse system of nanoparticle ensembles. © 2015 Macmillan Publishers Limited. All rights reserved
- …