140 research outputs found

    TWO NEW SPECIES OF COPEPODS PARASITIC ON JAPANESE FISHES

    Get PDF
    Of the two species described here, one was found at the Tamano Marine Laboratory of Okayama University, and the other at the Fish Culture Ground of Kinki University at Sirahama, Wakayama Prefecture. Thanks are due to the authorities of the two institutions for their generous supply of the material

    Velarium control and visual steering in box jellyfish

    Get PDF
    Directional swimming in the box jellyfish Tripedalia cystophora (cubozoa, cnidaria) is controlled by the shape of the velarium, which is a thin muscular sheet that forms the opening of the bell. It was unclear how different patterns of visual stimulation control directional swimming and that is the focus of this study. Jellyfish were tethered inside a small experimental tank, where the four vertical walls formed light panels. All four panels were lit at the start of an experiment. The shape of the opening in the velarium was recorded in response to switching off different combinations of panels. We found that under the experimental conditions the opening in the velarium assumed three distinct shapes during a swim contraction. The opening was (1) centred or it was off-centred and pocketed out either towards (2) a rhopalium or (3) a pedalium. The shape of the opening in the velarium followed the direction of the stimulus as long as the stimulus contained directional information. When the stimulus contained no directional information, the percentage of centred pulses increased and the shape of the off-centred pulses had a random orientation. Removing one rhopalium did not change the directional response of the animals, however, the number of centred pulses increased. When three rhopalia were removed, the percentage of centred pulses increased even further and the animals lost their ability to respond to directional information

    Contrast and rate of light intensity decrease control directional swimming in the box jellyfish Tripedalia cystophora (Cnidaria, Cubomedusae)

    Get PDF
    Box jellyfish respond to visual stimuli by changing the dynamics and frequency of bell contractions. In this study, we determined how the contrast and the dimming time of a simple visual stimulus affected bell contraction dynamics in the box jellyfish Tripedalia cystophora. Animals were tethered in an experimental chamber where the vertical walls formed the light stimuli. Two neighbouring walls were darkened and the contraction of the bell was monitored by high-speed video. We found that (1) bell contraction frequency increased with increasing contrast and decreasing dimming time. Furthermore, (2) when increasing the contrast and decreasing the dimming time pulses with an off-centred opening had a better defined direction and (3) the number of centred pulses decreased. Only weak effects were found on the relative diameter of the contracted bell and no correlation was found for the duration of bell contraction. Our observations show that visual stimuli modulate swim speed in T. cystophora by changing the swim pulse frequency. Furthermore, the direction of swimming is better defined when the animal perceives a high-contrast, or fast dimming, stimulus

    Development of the rhopalial nervous system in Aurelia sp.1 (Cnidaria, Scyphozoa)

    Get PDF
    We examined the development of the nervous system in the rhopalium, a medusa-specific sensory structure, in Aurelia sp.1 (Cnidaria, Scyphozoa) using confocal microscopy. The rhopalial nervous system appears primarily ectodermal and contains neurons immunoreactive to antibodies against tyrosinated tubulin, taurine, GLWamide, and FMRFamide. The rhopalial nervous system develops in an ordered manner: the presumptive gravity-sensing organ, consisting of the lithocyst and the touch plate, differentiates first; the “marginal center,” which controls swimming activity, second; and finally, the ocelli, the presumptive photoreceptors. At least seven bilaterally arranged neuronal clusters consisting of sensory and ganglion cells and their neuronal processes became evident in the rhopalium during metamorphosis to the medusa stage. Our analysis provides an anatomical framework for future gene expression and experimental studies of development and functions of scyphozoan rhopalia

    Rural waste generation: a geographical survey at local scale

    Get PDF
    "The paper examines the per capita waste generation rates from from rural areas of Neamț County (Romania) using thematic cartography. Geographical approach of this issue is difficult because the lack of a geostatistic database at commune scale. Spatial analysis of waste indicators reveals several disparities between localities. Comparability of data between communes located in various geographical conditions must be carrefully made according to local waste management systems. Several dysfunctionalities are outlined in order to compare these results, on the one hand, between localities and on the one hand, between recent years. Geographical analysis of waste generation rates is imperative for a proper monitoring of this sector. Data from 2009, 2010 and 2012 shows that rural waste management is in a full process of change towards a more organized, stable and efficient system." (author's abstract

    Chromosome Duplication in <i>Saccharomyces cerevisiae</i>

    Get PDF
    The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G 1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation. Keywords: DNA replication; cell cycle; chromatin; chromosome duplication; genome stability; YeastBookNational Institutes of Health (U.S.) (Grant GM-052339
    corecore