13,907 research outputs found
Molecular Hydrogen Emission Lines in Far Ultraviolet Spectroscopic Explorer Observations of Mira B
We present new Far Ultraviolet Spectroscopic Explorer (FUSE) observations of
Mira A's wind-accreting companion star, Mira B. We find that the strongest
lines in the FUSE spectrum are H2 lines fluoresced by H I Lyman-alpha. A
previously analyzed Hubble Space Telescope (HST) spectrum also shows numerous
Lyman-alpha fluoresced H2 lines. The HST lines are all Lyman band lines, while
the FUSE H2 lines are mostly Werner band lines, many of them never before
identified in an astrophysical spectrum. We combine the FUSE and HST data to
refine estimates of the physical properties of the emitting H2 gas. We find
that the emission can be reproduced by an H2 layer with a temperature and
column density of T=3900 K and log N(H2)=17.1, respectively. Another similarity
between the HST and FUSE data, besides the prevalence of H2 emission, is the
surprising weakness of the continuum and high temperature emission lines,
suggesting that accretion onto Mira B has weakened dramatically. The UV fluxes
observed by HST on 1999 August 2 were previously reported to be over an order
of magnitude lower than those observed by HST and the International Ultraviolet
Explorer (IUE) from 1979--1995. Analysis of the FUSE data reveals that Mira B
was still in a similarly low state on 2001 November 22.Comment: 23 pages, 6 figures; AASTEX v5.0 plus EPSF extensions in mkfig.sty;
accepted by Ap
Triatomic continuum resonances for large negative scattering lengths
We study triatomic systems in the regime of large negative scattering lengths
which may be more favorable for the formation of condensed trimers in trapped
ultracold monoatomic gases as the competition with the weakly bound dimers is
absent. The manipulation of the scattering length can turn an excited weakly
bound Efimov trimer into a continuum resonance. Its energy and width are
described by universal scaling functions written in terms of the scattering
length and the binding energy, , of the shallowest triatomic molecule. For
the excited Efimov state turns into a
continuum resonance.Comment: 4 pages, 4 figure
Extremely high energy hadron and gamma-ray families(3). Core structure of the halo of superfamily
The study of the core structure seen in the halo of Mini-Andromeda 3(M.A.3), which was observed in the Chacaltaya emulsion chamber, is presented. On the assumption that lateral distribution of darkness of the core is exponential type, i.e., D=D0exp(-R/r0), subtraction of D from halo darkness is performed until the cores are gone. The same quantity on cores obtained by this way are summarized. The analysis is preliminary and is going to be developed
Molecular Basis for poly(A) RNP Architecture and Recognition by the Pan2-Pan3 Deadenylase
The stability of eukaryotic mRNAs is dependent on a ribonucleoprotein (RNP) complex of poly(A)-binding proteins (PABPC1/Pab1) organized on the poly(A) tail. This poly(A) RNP not only protects mRNAs from premature degradation but also stimulates the Pan2-Pan3 deadenylase complex to catalyze the first step of poly(A) tail shortening. We reconstituted this process in vitro using recombinant proteins and show that Pan2-Pan3 associates with and degrades poly(A) RNPs containing two or more Pab1 molecules. The cryo-EM structure of Pan2-Pan3 in complex with a poly(A) RNP composed of 90 adenosines and three Pab1 protomers shows how the oligomerization interfaces of Pab1 are recognized by conserved features of the deadenylase and thread the poly(A) RNA substrate into the nuclease active site. The structure reveals the basis for the periodic repeating architecture at the 3' end of cytoplasmic mRNAs. This illustrates mechanistically how RNA-bound Pab1 oligomers act as rulers for poly(A) tail length over the mRNAs' lifetime.We would like to thank ... the MPIB cryo-EM, and core facilities ..
Probing the Efimov discrete scaling in atom-molecule collision
The discrete Efimov scaling behavior, well-known in the low-energy spectrum
of three-body bound systems for large scattering lengths (unitary limit), is
identified in the energy dependence of atom-molecule elastic cross-section in
mass imbalanced systems. That happens in the collision of a heavy atom with
mass with a weakly-bound dimer formed by the heavy atom and a lighter one
with mass . Approaching the heavy-light unitary limit the wave
elastic cross-section will present a sequence of zeros/minima at
collision energies following closely the Efimov geometrical law. Our results
open a new perspective to detect the discrete scaling behavior from low-energy
scattering data, which is timely in view of the ongoing experiments with
ultra-cold binary mixtures having strong mass asymmetries, such as Lithium and
Caesium or Lithium and Ytterbium
On-demand single-photon state generation via nonlinear absorption
We propose a method for producing on-demand single-photon states based on
collision-induced exchanges of photons and unbalanced linear absorption between
two single-mode light fields. These two effects result in an effective
nonlinear absorption of photons in one of the modes, which can lead to single
photon states. A quantum nonlinear attenuator based on such a mechanism can
absorb photons in a normal input light pulse and terminate the absorption at a
single-photon state. Because the output light pulses containing single photons
preserve the properties of the input pulses, we expect this method to be a
means for building a highly controllable single photon source.Comment: 5 pages, 2 figures, to appear in PRA. To be published in PR
New Measurement of the Relative Scintillation Efficiency of Xenon Nuclear Recoils Below 10 keV
Liquid xenon is an important detection medium in direct dark matter
experiments, which search for low-energy nuclear recoils produced by the
elastic scattering of WIMPs with quarks. The two existing measurements of the
relative scintillation efficiency of nuclear recoils below 20 keV lead to
inconsistent extrapolations at lower energies. This results in a different
energy scale and thus sensitivity reach of liquid xenon dark matter detectors.
We report a new measurement of the relative scintillation efficiency below 10
keV performed with a liquid xenon scintillation detector, optimized for maximum
light collection. Greater than 95% of the interior surface of this detector was
instrumented with photomultiplier tubes, giving a scintillation yield of 19.6
photoelectrons/keV electron equivalent for 122 keV gamma rays. We find that the
relative scintillation efficiency for nuclear recoils of 5 keV is 0.14, staying
constant around this value up to 10 keV. For higher energy recoils we measure a
value around 20%, consistent with previously reported data. In light of this
new measurement, the XENON10 experiment's results on spin-independent
WIMP-nucleon cross section, which were calculated assuming a constant 0.19
relative scintillation efficiency, change from cm to
cm for WIMPs of mass 100 GeV/c, and from
cm to cm for WIMPs of mass 30
GeV/c.Comment: 8 pages, 8 figure
- …