70 research outputs found

    4-bit Factorization Circuit Composed of Multiplier Units with Superconducting Flux Qubits toward Quantum Annealing

    Full text link
    Prime factorization (P = M*N) is considered to be a promising application in quantum computations. We perform 4-bit factorization in experiments using a superconducting flux qubit toward quantum annealing. Our proposed method uses a superconducting quantum circuit implementing a multiplier Hamiltonian, which provides combinations of M and N as a factorization solution after quantum annealing when the integer P is initially set. The circuit comprises multiple multiplier units combined with connection qubits. The key points are a native implementation of the multiplier Hamiltonian to the superconducting quantum circuit and its fabrication using a Nb multilayer process with a Josephson junction dedicated to the qubit. The 4-bit factorization circuit comprises 32 superconducting flux qubits. Our method has superior scalability because the Hamiltonian is implemented with fewer qubits than in conventional methods using a chimera graph architecture. We perform experiments at 10 mK to clarify the validity of interconnections of a multiplier unit using qubits. We demonstrate experiments at 4.2 K and simulations for the factorization of integers 4, 6, and 9.Comment: Main text (9 pages, 5 figures) and Appendix (8 pages, 7 figures). Submitted in IEEE Transactions on Applied Superconductivity (under review

    Experimental Demonstrations of Native Implementation of Boolean Logic Hamiltonian in a Superconducting Quantum Annealer

    Full text link
    Experimental demonstrations of quantum annealing with native implementation of Boolean logic Hamiltonians are reported. As a superconducting integrated circuit, a problem Hamiltonian whose set of ground states is consistent with a given truth table is implemented for quantum annealing with no redundant qubits. As examples of the truth table, NAND and NOR are successfully fabricated as an identical circuit. Similarly, a native implementation of a multiplier comprising six superconducting flux qubits is also demonstrated. These native implementations of Hamiltonians consistent with Boolean logic provide an efficient and scalable way of applying annealing computation to so-called circuit satisfiability problems that aim to find a set of inputs consistent with a given output over any Boolean logic functions, especially those like factorization through a multiplier Hamiltonian. A proof-of-concept demonstration of a hybrid computing architecture for domain-specific quantum computing is described.Comment: 12 pages, 11 figure

    Quantitation of the neural silencing activity of anion channelrhodopsins in Caenorhabditis elegans and their applicability for long-term illumination

    Get PDF
    Ion pumps and channels are responsible for a wide variety of biological functions. Ion pumps transport only one ion during each stimulus-dependent reaction cycle, whereas ion channels conduct a large number of ions during each cycle. Ion pumping rhodopsins such as archaerhodopsin-3 (Arch) are often utilized as light-dependent neural silencers in animals, but they require a high-density light illumination of around 1 mW/mm2. Recently, anion channelrhodopsins -1 and -2 (GtACR1 and GtACR2) were discovered as light-gated anion channels from the cryptophyte algae Guillardia theta. GtACRs are therefore expected to silence neural activity much more efficiently than Arch. In this study, we successfully expressed GtACRs in neurons of the nematode Caenorhabditis elegans (C. elegans) and quantitatively evaluated how potently GtACRs can silence neurons in freely moving C. elegans. The results showed that the light intensity required for GtACRs to cause locomotion paralysis was around 1 µW/mm2, which is three orders of magnitude smaller than the light intensity required for Arch. As attractive features, GtACRs are less harmfulness to worms and allow stable neural silencing effects under long-term illumination. Our findings thus demonstrate that GtACRs possess a hypersensitive neural silencing activity in C. elegans and are promising tools for long-term neural silencing

    Quantitation of the neural silencing activity of anion channelrhodopsins in Caenorhabditis elegans and their applicability for long-term illumination

    Get PDF
    Ion pumps and channels are responsible for a wide variety of biological functions. Ion pumps transport only one ion during each stimulus-dependent reaction cycle, whereas ion channels conduct a large number of ions during each cycle. Ion pumping rhodopsins such as archaerhodopsin-3 (Arch) are often utilized as light-dependent neural silencers in animals, but they require a high-density light illumination of around 1 mW/mm2. Recently, anion channelrhodopsins -1 and -2 (GtACR1 and GtACR2) were discovered as light-gated anion channels from the cryptophyte algae Guillardia theta. GtACRs are therefore expected to silence neural activity much more efficiently than Arch. In this study, we successfully expressed GtACRs in neurons of the nematode Caenorhabditis elegans (C. elegans) and quantitatively evaluated how potently GtACRs can silence neurons in freely moving C. elegans. The results showed that the light intensity required for GtACRs to cause locomotion paralysis was around 1 µW/mm2, which is three orders of magnitude smaller than the light intensity required for Arch. As attractive features, GtACRs are less harmfulness to worms and allow stable neural silencing effects under long-term illumination. Our findings thus demonstrate that GtACRs possess a hypersensitive neural silencing activity in C. elegans and are promising tools for long-term neural silencing

    Association between high psychological distress and poor oral health-related quality of life (OHQoL) in Japanese community-dwelling people: the Nagasaki Islands Study

    Get PDF
    Background: We investigated the association between psychological distress and oral health status/oral health-related quality of life (OHQoL) in Japanese community-dwelling people. Methods: We conducted a cross-sectional study using data from the Nagasaki Islands Study. A total of 1183 (455 men and 728 women)has been analyzed in this study. Psychological distress was measured using the Kessler Psychological Distress Scale (K6). Oral health status was measured by dental examination. The OHQoL was measured using the General Oral Health Assessment Index (GOHAI). We defined the total score of ?5 points on the K6 as high psychological distress (high-K6 group). Results: The multiple linear regression analysis to identify the GOHAI showed that gender, K6, the total number of teeth, the number of dental caries, and visiting a dental clinic within the past 6 months significantly associated with the GOHAI. Among all of these variables, high-K6 (? 5)was a substantial contributing factor of the GOHAI (β = ? 0.23, 95% Cl ? 2.31 to ?1.41, p < 0.0001).Conclusions: It is likely that the individual with high psychological distress was strongly related to poor OHQoL even in the general population

    CD153/CD30 signaling promotes age-dependent tertiary lymphoid tissue expansion and kidney injury

    Get PDF
    高齢者腎臓病を悪化させる原因細胞・分子の同定に成功. 京都大学プレスリリース. 2021-11-30.A new drug target for kidney disease. 京都大学プレスリリース. 2021-11-30.Tertiary lymphoid tissues (TLTs) facilitate local T- and B-cell interactions in chronically inflamed organs. However, the cells and molecular pathways that govern TLT formation are poorly defined. Here we identify TNF superfamily CD153-CD30 signaling between two unique age-dependent lymphocyte subpopulations, CD153⁺PD-1⁺CD4⁺ senescence-associated T (SAT) cells and CD30+T-bet+ age-associated B cells (ABCs), as a driver for TLT expansion. SAT cells, which produced ABC-inducing factors IL21 and IFNγ, and ABCs progressively accumulated within TLTs in aged kidneys after injury. Notably, in kidney injury models, CD153 or CD30 deficiency impaired functional SAT cell induction, which resulted in reduced ABC numbers and attenuated TLT formation with improved inflammation, fibrosis and renal function. Attenuated TLT formation after transplantation of CD153-deficient bone marrow further supported the importance of CD153 in immune cells. Clonal analysis revealed that SAT cells and ABCs in the kidneys arose from both local differentiation and recruitment from the spleen. In the synovium of aged rheumatoid arthritis patients, T peripheral helper/T follicular helper cells and ABCs also expressed CD153 and CD30, respectively. Together, our data reveal a previously unappreciated function of CD153-CD30 signaling in TLT formation and propose targeting CD153-CD30 signaling pathway as a therapeutic target for slowing kidney disease progression

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Design and evaluation of magnetic field tolerant single flux quantum circuits for superconductive sensing systems

    No full text

    Superconductive Random Number Generator Using Thermal Noises in SFQ Circuits

    No full text
    corecore