69 research outputs found

    Electronic structure of pristine and K-doped solid picene: Non-rigid-band change and its implication for electron-intramolecular-vibration interaction

    Get PDF
    We use photoemission spectroscopy to study electronic structures of pristine and K-doped solid picene. The valence band spectrum of pristine picene consists of three main features with no state at the Fermi level (EF), while that of K-doped picene has three structures similar to those of pristine picene with new states near EF, consistent with the semiconductor-metal transition. The K-induced change cannot be explained with a simple rigid-band model of pristine picene, but can be interpreted by molecular orbital calculations considering electron-intramolecular-vibration interaction. Excellent agreement of the K-doped spectrum with the calculations points to importance of electron-intramolecular-vibration interaction in K-doped picene.Comment: This article is accepted by Physical Review

    Optimization of an Electron Transport Layer to Enhance the Power Conversion Efficiency of Flexible Inverted Organic Solar Cells

    Get PDF
    The photovoltaic (PV) performance of flexible inverted organic solar cells (IOSCs) with an active layer consisting of a blend of poly(3-hexylthiophene) and [6, 6]-phenyl C61-butlyric acid methyl ester was investigated by varying the thicknesses of ZnO seed layers and introducing ZnO nanorods (NRs). A ZnO seed layer or ZnO NRs grown on the seed layer were used as an electron transport layer and pathway to optimize PV performance. ZnO seed layers were deposited using spin coating at 3,000 rpm for 30 s onto indium tin oxide (ITO)-coated polyethersulphone (PES) substrates. The ZnO NRs were grown using an aqueous solution method at a low temperature (90°C). The optimized device with ZnO NRs exhibited a threefold increase in PV performance compared with that of a device consisting of a ZnO seed layer without ZnO NRs. Flexible IOSCs fabricated using ZnO NRs with improved PV performance may pave the way for the development of PV devices with larger interface areas for effective exciton dissociation and continuous carrier transport paths

    Optical coherence tomography—current technology and applications in clinical and biomedical research

    Get PDF

    Effects of cardiac sympathetic innervation on regional wall motion abnormality in patients with long QT syndrome

    No full text
    AIM—To assess the spatial relation between regional cardiac sympathetic innervation and regional ventricular repolarisation indicated by ventricular wall motion abnormality in patients with congenital long QT syndrome.
DESIGN—Regional percentage uptake and washout rate of (123)I metaiodobenzylguanidine (MIBG) were measured to assess cardiac sympathetic innervation in septum, anterior wall, lateral wall, and posterior wall. Left ventricular short axis images on echocardiography were digitised to reconstruct digitised M mode echocardiograms, from which left ventricular wall thickness curves were obtained. The wall thickening time (ThT) was defined as the period in which the instantaneous wall thickness exceeded 90% of the maximum wall thickness. The ThT was measured from the ventricular wall thickness curve at the same segments where regional percentage uptake and washout rate of (123)I MIBG were measured.
PATIENTS—Seven patients with long QT syndrome.
RESULTS—The regional washout rate (mean (SD)) of (123)I MIBG in patients with long QT syndrome was greater in the segments with decreased percentage uptake of (123)I MIBG than in those without (17.4 (10.6)% v 9.7 (16.5)%, p < 0.03). ThT in segments both with and without decreased percentage uptake of (123)I MIBG was longer than in control subjects (p < 0.0001). ThT was longer in the segments with decreased percentage uptake of (123)I MIBG than in those without (199 (70) ms v 150 (66) ms, p = 0.0018).
CONCLUSIONS—Activation of regional cardiac sympathetic terminals is likely to participate in additional regional prolongation of ventricular repolarisation in patients with long QT syndrome.


Keywords: long QT syndrome; sympathetic innervation; regional wall motio

    Dispersion of regional wall motion abnormality in patients with long QT syndrome

    No full text
    Objective—To examine the left ventricular regional wall motion abnormality and to evaluate dispersion of this abnormality in patients with long QT syndrome.
Design—Left ventricular short axis images at basal and middle levels were recorded on videotape and digitised to reconstruct digitised M mode echocardiograms, from which left ventricular wall thickness curves were obtained. The wall thickening time (ThT) was defined as the period in which the instantaneous wall thickness exceeded 90% of the maximum wall thickness. ThT was measured at three segments in each of the septal and free wall sides of the left ventricle, a total of 12 segments. To examine the mechanical dispersion of the left ventricle, the difference between the maximum and minimum ThT of 12 segments in each subject was obtained.
Patients—Eight patients with congenital long QT syndrome (averaged QTc interval (SD) 509 (27) ms(1/2)) and 10 control subjects (QTc interval 397 (26) ms(1/2)) were examined.
Results—The averaged ThT values of the 12 segments pooled from all subjects were correlated with the QT intervals (r = 0.72, p < 0.005). Thus the averaged ThT in the long QT syndrome patients was longer than in the control subjects (p < 0.005). The segmental variation of ThT in the patients was greater than in the control subjects (p < 0.001). The dispersion of ThT in the patients was therefore larger than in control subjects (p < 0.005). However, the pattern of ThT variation in the patients varied according to the individual subject.
Conclusions—There is not only electrical but also mechanical dispersion in the left ventricle of long QT syndrome patients. Regional assessment of ventricular wall motion may allow quantification of the spatial variation of wall motion abnormality.

 Keywords: echocardiography;  long QT syndrome;  regional wall motion;  dispersio

    Molecular cloning and the complete nucleotide sequence of cDNA to mRNA for S-100 protein of rat brain.

    No full text
    The complete nucleotide sequence of mRNA for beta-subunit of rat brain S-100 protein was determined from recombinant cDNA clones. The sequence was composed of 1488 bp which included the 276 bp of the complete coding region, the 120 bp of the 5'-noncoding region and the 1092 bp of the 3'-noncoding region containing two polyadenylation signals. In addition, the poly(A) tail was also found. The amino acid sequence deduced from the nucleotide sequence was homologous to the amino acid sequence of bovine S-100 beta subunit except 4 residues showing species differences. From the viewpoint of evolutionary implications, the homology between the nucleotide sequence of S-100 and those of rat intestinal Ca-binding protein (ICaBP) and calmodulin (CaM) was examined. A dot-blot hybridization of poly(A) RNA from the developing rat brains using a labeled cDNA showed a rapid increase in S-100 mRNA at 10-20 postnatal days. The presence of S-100 mRNA in C-6 glioma cells is also described

    Organometallic half-sandwich iridium anticancer complexes

    Get PDF
    The low-spin 5d6 IrIII organometallic half-sandwich complexes [(η5-Cpx)Ir(XY)Cl]0/+, Cpx = Cp*, tetramethyl(phenyl)cyclopentadienyl (Cpxph), or tetramethyl(biphenyl)cyclopentadienyl (Cpxbiph), XY = 1,10-phenanthroline (4−6), 2,2′-bipyridine (7−9), ethylenediamine (10 and 11), or picolinate (12−14), hydrolyze rapidly. Complexes with N,N-chelating ligands readily form adducts with 9-ethylguanine but not 9-ethyladenine; picolinate complexes bind to both purines. Cytotoxic potency toward A2780 human ovarian cancer cells increases with phenyl substitution on Cp*: Cpxbiph > Cpxph > Cp*; Cpxbiph complexes 6 and 9 have submicromolar activity. Guanine residues are preferential binding sites for 4−6 on plasmid DNA. Hydrophobicity (log P), cell and nucleus accumulation of Ir correlate with cytotoxicity, 6 > 5 > 4; they distribute similarly within cells. The ability to displace DNA intercalator ethidium bromide from DNA correlates with cytotoxicity and viscosity of Ir−DNA adducts. The hydrophobicity and intercalative ability of Cpxph and Cpxbiph make a major contribution to the anticancer potency of their IrIII complexes
    corecore