34 research outputs found

    Resistance to IL-10 inhibition of interferon gamma production and expression of suppressor of cytokine signaling 1 in CD4(+ )T cells from patients with rheumatoid arthritis

    Get PDF
    IL-10 has been shown to block the antigen-specific T-cell cytokine response by inhibiting the CD28 signaling pathway. We found that peripheral blood CD4(+ )T cells from patients with active rheumatoid arthritis (RA) were able to produce greater amounts of interferon gamma after CD3 and CD28 costimulation in the presence of 1 ng/ml IL-10 than were normal control CD4(+ )T cells, although their surface expression of the type 1 IL-10 receptor was increased. The phosphorylation of signal transducer and activator of transcription 3 was sustained in both blood and synovial tissue CD4(+ )T cells of RA, but it was not augmented by the presence of 1 ng/ml IL-10. Sera from RA patients induced signal transducer and activator of transcription 3 phosphorylation in normal CD4(+ )T cells, which was mostly abolished by neutralizing anti-IL-6 antibody. Preincubation of normal CD4(+ )T cells with IL-6 reduced IL-10-mediated inhibition of interferon gamma production. Blood CD4(+ )T cells from RA patients contained higher levels of suppressor of cytokine signaling 1 but lower levels of suppressor of cytokine signaling 3 mRNA compared with control CD4(+ )T cells, as determined by real-time PCR. These results indicate that RA CD4(+ )T cells become resistant to the immunosuppressive effect of IL-10 before migration into synovial tissue, and this impaired IL-10 signaling may be associated with sustained signal transducer and activator of transcription 3 activation and suppressor of cytokine signaling 1 induction

    Selective recruitment of CXCR3+ and CCR5+ CCR4+ T cells into synovial tissue in patients with rheumatoid arthritis.

    Get PDF
    The inflamed synovial tissue (ST) of rheumatoid arthritis (RA) is characterized by the selective accumulation of interferon gamma-producing Th1-type CD4+ T cells. In this study, we investigated whether the predominance of Th1-type CD4+ cells in the ST lesion is mediated by their selective recruitment through Th1 cell-associated chemokine receptors CXCR3 and CCR5. The lymphocyte aggregates in the ST of RA contained a large number of CD4+ T cells, which mostly expressed both CXCR3 and CCR5, but not CCR4. In contrast, the frequencies of CD4+ and CD8+ T cells expressing CXCR3 and CCR5 in the blood were significantly decreased in RA patients, compared with healthy controls (HC), although there was no difference in the frequencies of CCR4-expressing CD4+ and CD8+ T cells between RA and HC. CXCR3, CCR5, and CCR4 expression in blood CD4 + T cells and CXCR3 expression in CD8+ T cells were increased after interleukin-15 (IL-15) stimulation. Therefore, the distribution of Th1-type CD4+ T cells into the ST from the blood in RA may be associated with the local expression of chemokines, both CXCR3 and CCR5 ligands, and IL-15 may play a role in enhancing these chemokine receptors on CD4+ T cell infiltrates.</p

    Recruitment of CD16+ monocytes into synovial tissues is mediated by fractalkine and CX3CR1 in rheumatoid arthritis patients

    Get PDF
    CD16+ monocytes, identified as a minor population of monocytes in human peripheral blood, have been implicated in several inflammatory diseases, including rheumatoid arthritis (RA). Fractalkine (FKN, CX3CL1), a member of the CX3 C subfamily, is induced by pro-inflammatory cytokines, while a receptor for FKN, CX3CR1, is capable of mediating both leukocyte migration and firm adhesion. Here, we investigated the role of FKN and CX3CR1 in activation of CD16+ monocytes and their recruitment into synovial tissues in RA patients. High levels of soluble FKN were detected in the synovial fluid and sera of RA patients. Circulating CD16+ monocytes showed a higher level of CX3CR1 expression than CD16- monocytes in both RA patients and healthy subjects. High level expression of CX3CR1 was also seen in CD16+ monocytes localized to the lining layer in RA synovial tissue. In the in vitro culture experiments, IL-10 induced CX3CR1 expression on the surface of monocytes, and TNFalpha induced membrane-bound FKN as well as soluble FKN expression in synovial fibroblasts. Moreover, soluble FKN was capable of inducing IL-1beta and IL-6 by activated monocytes. These results suggest that FKN might preferentially mediate migration and recruitment of CD16+ monocytes, and might contribute to synovial tissue inflammation.</p

    Pathophysiological functions of CD30+ CD4+ T cells in rheumatoid arthritis.

    Get PDF
    High levels of soluble CD30 (sCD30) were detected in the serum and synovial fluid of patients with rheumatoid arthritis (RA), indicating the involvement of CD30+ T cells in the pathogenesis. We investigated the induction of CD30 and its functions in CD4+T cells from patients with established RA (disease duration &#62;_2 years). CD4+ T cells from both the peripheral blood (PB) and synovial tissue (ST) of RA patients expressed surface CD30 when stimulated with anti-CD3 antibody (Ab) and anti-CD28 Ab, but their CD30 induction was slower and weaker compared with PB CD4+ T cells of healthy controls (HC). Immunohistochemical analysis showed that only a small proportion of lymphocytes expressed CD30 in the ST (-1%). RA PB CD4+ T cells, after recovery from 6-day stimulation with anti-CD3 Ab and anti-CD28 Ab, showed in intracellular cytokine staining that CD30+ T cells could produce more interleukin-4 (IL-4) but less interferon-gamma. In the culture of RA PB CD4+ T Cells with anti-CD3 Ab and anti-CD28 Ab, blocking anti-CD30 Ab similarly inhibited the cell proliferation and activation of nuclear factor-kappaB on day 4 in RA and HC, but inhibited the apoptotic cell death on day 6 only in RA. These results indicate that despite high-level expression of sCD30, the anti-inflammatory activity of IL-4-producing CD30+ CD4+ T cells may be limited in the ST due to a poor induction of surface CD30 and a susceptibility to CD30-mediated cell death.</p

    Induction of tumour necrosis factor receptor-expressing macrophages by interleukin-10 and macrophage colony-stimulating factor in rheumatoid arthritis

    Get PDF
    Despite its potent ability to inhibit proinflammatory cytokine synthesis, interleukin (IL)-10 has a marginal clinical effect in rheumatoid arthritis (RA) patients. Recent evidence suggests that IL-10 induces monocyte/macrophage maturation in cooperation with macrophage-colony stimulating factor (M-CSF). In the present study, we found that the inducible subunit of the IL-10 receptor (IL-10R), type 1 IL-10R (IL-10R1), was expressed at higher levels on monocytes in RA than in healthy controls, in association with disease activity, while their expression of both type 1 and 2 tumour necrosis factor receptors (TNFR1/2) was not increased. The expression of IL-10R1 but not IL-10R2 was augmented on monocytes cultured in the presence of RA synovial tissue (ST) cell culture supernatants. Cell surface expression of TNFR1/2 expression on monocytes was induced by IL-10, and more efficiently in combination with M-CSF. Two-color immunofluorescence labeling of RA ST samples showed an intensive coexpression of IL-10R1, TNFR1/2, and M-CSF receptor in CD68(+ )lining macrophages. Adhered monocytes, after 3-day preincubation with IL-10 and M-CSF, could produce more IL-1β and IL-6 in response to TNF-α in the presence of dibutyryl cAMP, as compared with the cells preincubated with or without IL-10 or M-CSF alone. Microarray analysis of gene expression revealed that IL-10 activated various genes essential for macrophage functions, including other members of the TNFR superfamily, receptors for chemokines and growth factors, Toll-like receptors, and TNFR-associated signaling molecules. These results suggest that IL-10 may contribute to the inflammatory process by facilitating monocyte differentiation into TNF-α-responsive macrophages in the presence of M-CSF in RA
    corecore