39,163 research outputs found
Matrix product states approach to the Heisenberg ferrimagnetic spin chains
We propose a new version of the matrix product (MP) states approach to the
description of quantum spin chains, which allows one to construct MP states
with certain total spin and its z-projection. We show that previously known MP
wavefunctions for integer-spin antiferromagnetic chains and ladders correspond
to some particular cases of our general ansatz. Our method allows to describe
systems with spontaneously broken rotational symmetry, like quantum
ferrimagnetic chains whose ground state has nonzero total spin. We apply this
approach to describe the ground state properties of the isotropic ferrimagnetic
Heisenberg chain with alternating spins 1 and 1/2 and compare our variational
results with the high-precision numerical data obtained by means of the quantum
Monte Carlo (QMC) method. For both the ground state energy and the correlation
functions we obtain very good agreement between the variational results and the
QMC data.Comment: 4 pages, RevTeX, uses psfig.sty, submitted to Phys. Rev.
Elementary Excitations of Heisenberg Ferrimagnetic Spin Chains
We numerically investigate elementary excitations of the Heisenberg
alternating-spin chains with two kinds of spins 1 and 1/2 antiferromagnetically
coupled to each other. Employing a recently developed efficient Monte Carlo
technique as well as an exact diagonalization method, we verify the spin-wave
argument that the model exhibits two distinct excitations from the ground state
which are gapless and gapped. The gapless branch shows a quadratic dispersion
in the small-momentum region, which is of ferromagnetic type. With the
intention of elucidating the physical mechanism of both excitations, we make a
perturbation approach from the decoupled-dimer limit. The gapless branch is
directly related to spin 1's, while the gapped branch originates from
cooperation of the two kinds of spins.Comment: 7 pages, 7 Postscript figures, RevTe
Quantized gravitational waves in the Milne universe
The quantization of gravitational waves in the Milne universe is discussed.
The relation between positive frequency functions of the gravitational waves in
the Milne universe and those in the Minkowski universe is clarified.
Implications to the one-bubble open inflation scenario are also discussed.Comment: 26 pages, 1 figure, revtex. submitted to Phys. Rev. D1
Asymptotic analysis of the model for distribution of high-tax payers
The z-transform technique is used to investigate the model for distribution
of high-tax payers, which is proposed by two of the authors (K. Y and S. M) and
others. Our analysis shows an asymptotic power-law of this model with the
exponent -5/2 when a total ``mass'' has a certain critical value. Below the
critical value, the system exhibits an ordinary critical behavior, and scaling
relations hold. Above the threshold, numerical simulations show that a
power-law distribution coexists with a huge ``monopolized'' member. It is
argued that these behaviors are observed universally in conserved aggregation
processes, by analizing an extended model.Comment: 5pages, 3figure
Intrinsic double-peak structure of the specific heat in low-dimensional quantum ferrimagnets
Motivated by recent magnetic measurements on A3Cu3(PO4)4 (A=Ca,Sr) and
Cu(3-Clpy)2(N3)2 (3-Clpy=3-Chloropyridine), both of which behave like
one-dimensional ferrimagnets, we extensively investigate the ferrimagnetic
specific heat with particular emphasis on its double-peak structure. Developing
a modified spin-wave theory, we reveal that ferromagnetic and antiferromagnetic
dual features of ferrimagnets may potentially induce an extra low-temperature
peak as well as a Schottky-type peak at mid temperatures in the specific heat.Comment: 5 pages, 6 figures embedded, Phys. Rev. B 65, 214418 (2002
Ground State Property of an Alternating Spin Ladder Involving Two Kinds of Inter-Chain Interactions
The ground state property of the alternating spin ladder is studied in the
case that the system involves an antiferromagnetic intra-chain interaction as
well as two kinds of inter-chain interactions; one is between spins of the same
magnitude and the other is between spins with different magnitudes. The
calculation has been carried out by the exact diagonalization method. As a
consequence of the competition among interactions, the system is revealed to
show an interesting variety of phases in the ground state property. Its phase
diagram is exhibited in the parameter space of the system. We find that,
however small the total amount of the inter-chain interactions is, the
ferrimagnetic ground state becomes unstable in a certain region. In this case,
which of the ferrimagnetic and the singlet ground state to appear is determined
only by the ratio between the inter-chain interactions regardless of their
total amount. The nature of two phases appearing in the singlet region of the
phase diagram and the type of the phase transition between them are also
discussed. The results are ensured by comparing with those of obtained in other
models which are contained in our model as special limiting cases.Comment: 12 pages, 9 PostScript figure
- …