39,163 research outputs found

    Matrix product states approach to the Heisenberg ferrimagnetic spin chains

    Full text link
    We propose a new version of the matrix product (MP) states approach to the description of quantum spin chains, which allows one to construct MP states with certain total spin and its z-projection. We show that previously known MP wavefunctions for integer-spin antiferromagnetic chains and ladders correspond to some particular cases of our general ansatz. Our method allows to describe systems with spontaneously broken rotational symmetry, like quantum ferrimagnetic chains whose ground state has nonzero total spin. We apply this approach to describe the ground state properties of the isotropic ferrimagnetic Heisenberg chain with alternating spins 1 and 1/2 and compare our variational results with the high-precision numerical data obtained by means of the quantum Monte Carlo (QMC) method. For both the ground state energy and the correlation functions we obtain very good agreement between the variational results and the QMC data.Comment: 4 pages, RevTeX, uses psfig.sty, submitted to Phys. Rev.

    Elementary Excitations of Heisenberg Ferrimagnetic Spin Chains

    Full text link
    We numerically investigate elementary excitations of the Heisenberg alternating-spin chains with two kinds of spins 1 and 1/2 antiferromagnetically coupled to each other. Employing a recently developed efficient Monte Carlo technique as well as an exact diagonalization method, we verify the spin-wave argument that the model exhibits two distinct excitations from the ground state which are gapless and gapped. The gapless branch shows a quadratic dispersion in the small-momentum region, which is of ferromagnetic type. With the intention of elucidating the physical mechanism of both excitations, we make a perturbation approach from the decoupled-dimer limit. The gapless branch is directly related to spin 1's, while the gapped branch originates from cooperation of the two kinds of spins.Comment: 7 pages, 7 Postscript figures, RevTe

    Quantized gravitational waves in the Milne universe

    Get PDF
    The quantization of gravitational waves in the Milne universe is discussed. The relation between positive frequency functions of the gravitational waves in the Milne universe and those in the Minkowski universe is clarified. Implications to the one-bubble open inflation scenario are also discussed.Comment: 26 pages, 1 figure, revtex. submitted to Phys. Rev. D1

    Asymptotic analysis of the model for distribution of high-tax payers

    Full text link
    The z-transform technique is used to investigate the model for distribution of high-tax payers, which is proposed by two of the authors (K. Y and S. M) and others. Our analysis shows an asymptotic power-law of this model with the exponent -5/2 when a total ``mass'' has a certain critical value. Below the critical value, the system exhibits an ordinary critical behavior, and scaling relations hold. Above the threshold, numerical simulations show that a power-law distribution coexists with a huge ``monopolized'' member. It is argued that these behaviors are observed universally in conserved aggregation processes, by analizing an extended model.Comment: 5pages, 3figure

    Intrinsic double-peak structure of the specific heat in low-dimensional quantum ferrimagnets

    Full text link
    Motivated by recent magnetic measurements on A3Cu3(PO4)4 (A=Ca,Sr) and Cu(3-Clpy)2(N3)2 (3-Clpy=3-Chloropyridine), both of which behave like one-dimensional ferrimagnets, we extensively investigate the ferrimagnetic specific heat with particular emphasis on its double-peak structure. Developing a modified spin-wave theory, we reveal that ferromagnetic and antiferromagnetic dual features of ferrimagnets may potentially induce an extra low-temperature peak as well as a Schottky-type peak at mid temperatures in the specific heat.Comment: 5 pages, 6 figures embedded, Phys. Rev. B 65, 214418 (2002

    Ground State Property of an Alternating Spin Ladder Involving Two Kinds of Inter-Chain Interactions

    Full text link
    The ground state property of the alternating spin ladder is studied in the case that the system involves an antiferromagnetic intra-chain interaction as well as two kinds of inter-chain interactions; one is between spins of the same magnitude and the other is between spins with different magnitudes. The calculation has been carried out by the exact diagonalization method. As a consequence of the competition among interactions, the system is revealed to show an interesting variety of phases in the ground state property. Its phase diagram is exhibited in the parameter space of the system. We find that, however small the total amount of the inter-chain interactions is, the ferrimagnetic ground state becomes unstable in a certain region. In this case, which of the ferrimagnetic and the singlet ground state to appear is determined only by the ratio between the inter-chain interactions regardless of their total amount. The nature of two phases appearing in the singlet region of the phase diagram and the type of the phase transition between them are also discussed. The results are ensured by comparing with those of obtained in other models which are contained in our model as special limiting cases.Comment: 12 pages, 9 PostScript figure
    • …
    corecore