28,805 research outputs found

    Quantum state transfer for multi-input linear quantum systems

    Full text link
    Effective state transfer is one of the most important problems in quantum information processing. Typically, a quantum information device is composed of many subsystems with multi-input ports. In this paper, we develop a general theory describing the condition for perfect state transfer from the multi-input ports to the internal system components, for general passive linear quantum systems. The key notion used is the zero of the transfer function matrix. Application to entanglement generation and distribution in a quantum network is also discussed.Comment: 6 pages, 3 figures. A preliminary condensed version of this work will appear in Proceedings of the 55th IEEE Conference on Decision and Contro

    Efficient spin control in high-quality-factor planar micro-cavities

    Get PDF
    A semiconductor microcavity embedding donor impurities and excited by a laser field is modelled. By including general decay and dephasing processes, and in particular cavity photon leakage, detailed simulations show that control over the spin dynamics is significally enhanced in high-quality-factor cavities, in which case picosecond laser pulses may produce spin-flip with high-fidelity final states.Comment: 6 pages, 4 figure

    Faster Compact On-Line Lempel-Ziv Factorization

    Get PDF
    We present a new on-line algorithm for computing the Lempel-Ziv factorization of a string that runs in O(NlogN)O(N\log N) time and uses only O(Nlogσ)O(N\log\sigma) bits of working space, where NN is the length of the string and σ\sigma is the size of the alphabet. This is a notable improvement compared to the performance of previous on-line algorithms using the same order of working space but running in either O(Nlog3N)O(N\log^3N) time (Okanohara & Sadakane 2009) or O(Nlog2N)O(N\log^2N) time (Starikovskaya 2012). The key to our new algorithm is in the utilization of an elegant but less popular index structure called Directed Acyclic Word Graphs, or DAWGs (Blumer et al. 1985). We also present an opportunistic variant of our algorithm, which, given the run length encoding of size mm of a string of length NN, computes the Lempel-Ziv factorization on-line, in O(mmin{(loglogm)(loglogN)logloglogN,logmloglogm})O\left(m \cdot \min \left\{\frac{(\log\log m)(\log \log N)}{\log\log\log N}, \sqrt{\frac{\log m}{\log \log m}} \right\}\right) time and O(mlogN)O(m\log N) bits of space, which is faster and more space efficient when the string is run-length compressible

    Polarization entanglement visibility of photon pairs emitted by a quantum dot embedded in a microcavity

    Full text link
    We study the photon emission from a quantum dot embedded in a microcavity. Incoherent pumping of its excitons and biexciton provokes the emission of leaky and cavity modes. By solving a master equation we obtain the correlation functions required to compute the spectrum and the relative efficiency among the emission of pairs and single photons. A quantum regime appears for low pumping and large rate of emission. By means of a post-selection process, a two beams experiment with different linear polarizations could be performed producing a large polarization entanglement visibility precisely in the quantum regime.Comment: 13 pages and 6 figure

    Competing Ground States of the New Class of Halogen-Bridged Metal Complexes

    Full text link
    Based on a symmetry argument, we study the ground-state properties of halogen-bridged binuclear metal chain complexes. We systematically derive commensurate density-wave solutions from a relevant two-band Peierls-Hubbard model and numerically draw the the ground-state phase diagram as a function of electron-electron correlations, electron-phonon interactions, and doping concentration within the Hartree-Fock approximation. The competition between two types of charge-density-wave states, which has recently been reported experimentally, is indeed demonstrated.Comment: 4 pages, 5 figures embedded, to appear in J. Phys. Soc. Jp

    Hybrid TLC-pair meter for the Sphinx Project

    Get PDF
    The chief aims in THE SPHINX PROJECT are research of super lepton physics and new detector experiments. At the second phase of THE SPHINX PROJECT, a hybrid TLC-PAIR METER was designed for measuring high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV) and measuring muon group (E mu 1 TeV). The principle of PAIR METER has been already proposed. In this TLC-PAIR METER, electromagnetic shower induced by cosmic ray muons are detected using TL (Thermoluminescence) sheets with position counters

    Elementary Excitations of Heisenberg Ferrimagnetic Spin Chains

    Full text link
    We numerically investigate elementary excitations of the Heisenberg alternating-spin chains with two kinds of spins 1 and 1/2 antiferromagnetically coupled to each other. Employing a recently developed efficient Monte Carlo technique as well as an exact diagonalization method, we verify the spin-wave argument that the model exhibits two distinct excitations from the ground state which are gapless and gapped. The gapless branch shows a quadratic dispersion in the small-momentum region, which is of ferromagnetic type. With the intention of elucidating the physical mechanism of both excitations, we make a perturbation approach from the decoupled-dimer limit. The gapless branch is directly related to spin 1's, while the gapped branch originates from cooperation of the two kinds of spins.Comment: 7 pages, 7 Postscript figures, RevTe
    corecore