336 research outputs found

    Error-mitigated quantum metrology via virtual purification

    Full text link
    Quantum metrology with entangled resources aims to achieve sensitivity beyond the standard quantum limit by harnessing quantum effects even in the presence of environmental noise. So far, sensitivity has been mainly discussed from the viewpoint of reducing statistical errors under the assumption of perfect knowledge of a noise model. However, we cannot always obtain complete information about a noise model due to coherence time fluctuations, which are frequently observed in experiments. Such unknown fluctuating noise leads to systematic errors and nullifies the quantum advantages. Here, we propose an error-mitigated quantum metrology that can filter out unknown fluctuating noise with the aid of purification-based quantum error mitigation. We demonstrate that our protocol mitigates systematic errors and recovers superclassical scaling in a practical situation with time-inhomogeneous bias-inducing noise. Our results reveal the usefulness of purification-based error mitigation for unknown fluctuating noise, thus paving the way not only for practical quantum metrology but also for quantum computation affected by such noise.Comment: 6+11 pages, 3+4 figure

    Effect of Dy substitution in the giant magnetocaloric properties of HoB2_{2}

    Full text link
    Recently, a massive magnetocaloric effect near the liquefaction temperature of hydrogen has been reported in the ferromagnetic material HoB2_{2}. Here we investigate the effects of Dy substitution in the magnetocaloric properties of Ho1−x_{1-x}Dyx_{x}B2_{2} alloys (x\textit{x} = 0, 0.3, 0.5, 0.7, 1.0). We find that the Curie temperature (T\textit{T}C_{C}) gradually increases upon Dy substitution, while the magnitude of the magnetic entropy change |ΔSM\Delta \textit{S}_{M}| at T\textit{T} = TC\textit{T}_{C} decreases from 0.35 to 0.15 J cm−3^{-3} K−1^{-1} for a field change of 5 T. Due to the presence of two magnetic transitions in these alloys, despite the change in the peak magnitude of |ΔSM\Delta \textit{S}_{M}|, the refrigerant capacity (RC\textit{RC}) and refrigerant cooling power (RCP\textit{RCP}) remains almost constant in all doping range, which as large as 5.5 J cm−3^{-3} and 7.0 J cm−3^{-3} for a field change of 5 T. These results imply that this series of alloys could be an exciting candidate for magnetic refrigeration in the temperature range between 10-50 K.Comment: 19 pages, 5 figures, 2 table

    Synergistic oligodeoxynucleotide strongly promotes CpG-induced interleukin-6 production

    Get PDF
    [Background] :Bacterial genomes span a significant portion of diversity, reflecting their adaptation strategies; these strategies include nucleotide usage biases that affect chromosome configuration. Here, we explore an immuno-synergistic oligodeoxynucleotide (iSN-ODN, named iSN34), derived from Lactobacillus rhamnosusGG (LGG) genomic sequences, that exhibits a synergistic effect on immune response to CpG-induced immune activation. [Methods]: The sequence of iSN34 was designed based on the genomic sequences of LGG. Pathogen-free mice were purchased from Japan SLC and maintained under temperature- and light-controlled conditions. We tested the effects of iSN34 exposure in vitro and in vivo by assessing effects on mRNA expression, protein levels, and cell type in murine splenocytes. [Results]: We demonstrate that iSN34 has a significant stimulatory effect when administered in combination with CpGODN, yielding enhanced interleukin (IL)-6 expression and production. IL-6 is a pleotropic cytokine that has been shown to prevent epithelial apoptosis during prolonged inflammation. [Conclusions]: Our results are the first report of a bacterial-DNA-derived ODN that exhibits immune synergistic activity.The potent over-expression of IL-6 in response to treatment with the combination of CpG ODN and iSN34 suggests anew approach to immune therapy.This finding may lead to novel clinical strategies for the prevention or treatment of dysfunctions of the innate and adaptive immune systems.This work was supported by A-STEP (Adaptable and Seamless Technology Transfer Program through Target-driven R&D)

    Secretion of an immunoreactive single-chain variable fragment antibody against mouse interleukin 6 by Lactococcus lactis

    Get PDF
    Epub 2016 Oct 8.Interleukin 6 (IL-6) is an important pathogenic factor in development of various inflammatory and autoimmune diseases and cancer. Blocking antibodies against molecules associated with IL-6/IL-6 receptor signaling are an attractive candidate for the prevention or therapy of these diseases. In this study, we developed a genetically modified strain of Lactococcus lactis secreting a single-chain variable fragment antibody against mouse IL-6 (IL6scFv). An IL6scFv-secretion vector was constructed by cloning an IL6scFv gene fragment into a lactococcal secretion plasmid and was electroporated into L. lactis NZ9000 (NZ-IL6scFv). Secretion of recombinant IL6scFv (rIL6scFv) by nisin-induced NZ-IL6scFv was confirmed by western blotting and was optimized by tuning culture conditions. We found that rIL6scFv could bind to commercial recombinant mouse IL-6. This result clearly demonstrated the immunoreactivity of rIL6scFv. This is the first study to engineer a genetically modified strain of lactic acid bacteria (gmLAB) that produces a functional anti-cytokine scFv. Numerous previous studies suggested that mucosal delivery of biomedical proteins using gmLAB is an effective and low-cost way to treat various disorders. Therefore, NZ-IL6scFv may be an attractive tool for the research and development of new IL-6 targeting agents for various inflammatory and autoimmune diseases as well as for cancer.ArticleAPPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 101(1):341-349 (2017)journal articl

    Dual-GSE: Resource-efficient Generalized Quantum Subspace Expansion

    Full text link
    Quantum error mitigation (QEM) is a class of hardware-efficient error reduction methods through additional modest quantum operations and classical postprocessing on measurement outcomes. The generalized quantum subspace expansion (GSE) has been recently proposed as a unified framework of two distinct QEM methods: quantum subspace expansion (QSE) and purification-based QEM. GSE takes over the advantages of these two methods, achieving the mitigation of both coherent and stochastic errors. However, GSE still requires multiple copies of quantum states and entangled measurements between the copies, as required in purification-based QEM. This is a significant drawback under the current situation of the restricted number and connectivity of qubits. In this work, we propose a resource-efficient implementation of GSE, which we name "Dual-GSE", circumventing significant overheads of state copies by constructing an ansatz of error-mitigated quantum states via dual-state purification. Remarkably, Dual-GSE can further simulate larger quantum systems beyond the size of available quantum hardware with a suitable ansatz construction inspired by those divide-and-conquer methods that forge entanglement classically. This also contributes to a significant reduction of the measurement overhead because we only need to measure subsystems' Pauli operators. The proposed method is demonstrated by numerical simulation of the eight-qubit transverse field Ising model, showing that our method estimates the ground state energy in high precision under gate noise with low mitigation overhead and practical sampling cost.Comment: 25 pages, 19 figure

    Association between Immediate Postoperative Radiographic Findings and Failed Internal Fixation for Trochanteric Fractures: Systematic Review and Meta-Analysis

    Get PDF
    Failed internal fixations for trochanteric fractures have a strong negative impact owing to increased postoperative mortality and high medical costs. However, evidence on the prognostic value of postoperative radiographic findings for failed internal fixations is limited. We aimed to clarify the association between comprehensive immediate postoperative radiographic findings and failed internal fixation using relative and absolute risk measures. We followed the meta-analysis of observational studies in epidemiology guidelines and the Cochrane handbook. We searched specific databases in November 2021. The outcomes of interest were failed internal fixation and cut-out. We pooled the odds ratios and 95% confidence intervals using a random-effects model and calculated the number needed to harm for each outcome. Thirty-six studies involving 8938 patients were included. The certainty of evidence in the association between postoperative radiographic findings and failed internal fixation or cut-out was mainly low or very low except for the association between intramedullary malreduction on the anteromedial cortex and failed internal fixation. Moderate certainty of evidence supported that intramedullary malreduction on the anteromedial cortex was associated with failed internal fixation. Most postoperative radiographic findings on immediate postoperative radiographs for trochanteric fractures were uncertain as prognostic factors for failed internal fixations

    Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    Get PDF
    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation
    • …
    corecore