4 research outputs found

    Twinfilin is required for actin-dependent developmental processes in Drosophila

    Get PDF
    The actin cytoskeleton is essential for cellular remodeling and many developmental and morphological processes. Twinfilin is a ubiquitous actin monomer–binding protein whose biological function has remained unclear. We discovered and cloned the Drosophila twinfilin homologue, and show that this protein is ubiquitously expressed in different tissues and developmental stages. A mutation in the twf gene leads to a number of developmental defects, including aberrant bristle morphology. This results from uncontrolled polymerization of actin filaments and misorientation of actin bundles in developing bristles. In wild-type bristles, twinfilin localizes diffusively to cytoplasm and to the ends of actin bundles, and may therefore be involved in localization of actin monomers in cells. We also show that twinfilin and the ADF/cofilin encoding gene twinstar interact genetically in bristle morphogenesis. These results demonstrate that the accurate regulation of size and dynamics of the actin monomer pool by twinfilin is essential for a number of actin-dependent developmental processes in multicellular eukaryotes

    The Mode of Action of Cyclo(l-Ala-l-Pro) in Inhibiting Aflatoxin Production of Aspergillus flavus

    No full text
    Cyclo(l-Ala-l-Pro) inhibits aflatoxin production in aflatoxigenic fungi without affecting fungal growth. The mode of action of cyclo(l-Ala-l-Pro) in inhibiting aflatoxin production of Aspergillus flavus was investigated. A glutathione S-transferase (GST) of the fungus, designated AfGST, was identified as a binding protein of cyclo(l-Ala-l-Pro) in an experiment performed using cyclo(l-Ala-l-Pro)-immobilized Sepharose beads. Cyclo(l-Ala-l-Pro) specifically bound to recombinant AfGST and inhibited its GST activity. Ethacrynic acid, a known GST inhibitor, inhibited the GST activity of recombinant AfGST and aflatoxin production of the fungus. Ethacrynic acid reduced the expression level of AflR, a key regulatory protein for aflatoxin production, similar to cyclo(l-Ala-l-Pro). These results suggest that cyclo(l-Ala-l-Pro) inhibits aflatoxin production by affecting GST function in A. flavus, and that AfGST inhibitors are possible candidates as selective aflatoxin production inhibitors
    corecore