43 research outputs found

    MicroRNAs Regulation of Tumor Angiogenesis

    Get PDF

    MicroRNA Regulation of SIRT1

    Get PDF
    SIRT1 is an NAD-dependent deacetylase that regulates stress response pathways. By deacetylating transcription factors and co-factors, SIRT1 modulates metabolism, inflammation, hypoxic responses, circadian rhythms, cell survival, and longevity. Since SIRT1 plays a key role in regulating pathways involved in cardiovascular diseases and metabolic diseases cancer, the regulation of SIRT1 has received intense scrutiny. The post-transcriptional regulation of SIRT1 is mediated by two classes of molecules, RNA-binding proteins (RBPs) and non-coding small RNAs. MicroRNAs (miRNAs) are short non-coding RNAs that regulate target gene expression in a post-transcriptional manner. More than 16 miRNAs modulate SIRT1 expression, including miR-34a. miR-34a induces colon cancer apoptosis through SIRT1, and miR-34a also promotes senescence in endothelial cells via SIRT1. This review describes the impact of miRNAs on SIRT1. The background of SIRT1 and miRNAs will be summarized, followed by the mechanism by which several key miRNAs alter SIRT1 levels, and how the RBP HuR regulates SIRT1. MicroRNA regulation of SIRT1 might affect a wide variety of pathways in humans, from metabolic diseases such as diabetes to cardiovascular diseases and cancer

    p53 and Vascular Dysfunction: MicroRNA in Endothelial Cells

    Get PDF
    In many cancer cells, p53 gene is mutated and accumulated, which is considered as a mechanistical target of tumorigenesis. The role of p53Β in non-cancerous cells has been focused on, since p53 activation diversely affects as human diseases, including vascular dysfunctions. p53 regulates vascular events, including vascular inflammation and senescence as well as cardiac dysfunction. Many researchers also have paid attention to the role of noncoding RNAs (ncRNAs), especially small-sized microRNAs (miRNAs) for the last decade and their noble biological cellular functions have been discovered. miRNAs expressed in endothelial cells (endothelial miRNAs) have been shown to control vascular events. Firstly, the importance of p53Β in a variety of vascular events, such as vascular inflammation and senescence, are summarized. Secondly, the way to regulate miRNAs by p53 and the involvement of miRNAs on p53 function are demonstrated. Finally, several endothelial miRNAs that have important roles are focused on. The aim of this chapter is to understand the role of p53Β in vascular diseases in the view of endothelial cell biology and the contribution of miRNAs related to p53

    The Role of miRNAs in Idiopathic Pulmonary Fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a genetic heterogeneous disease with high mortality and poor prognosis. IPF is characterized by persistent fibroblasts and relentless accumulation of collagen matrix. Epithelial-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndoMT) contribute to the progression of the fibrotic process. There are some therapeutic drugs that delay this progress, but eradicative medicine does not exist yet. MicroRNAs (miRNAs) are short single-stranded RNAs that regulate posttranscriptional silencing. Recent reports have shown that miRNAs play important roles in the development of IPF, as different expression levels of miRNAs in blood and lung tissue from IPF patients were closely associated with the occurrence of IPF disease. In this chapter, we will discuss the role of miRNAs in the pathogenesis, diagnosis, and treatment of IPF.Β In particular, we will focus on the regulation of EMT/EndoMT by miRNAs

    Platelet Factor 4 Regulation of Monocyte KLF4 in Experimental Cerebral Malaria

    Get PDF
    Cerebral malaria continues to be a difficult to treat complication of Plasmodium falciparum infection in children. We have shown that platelets can have major deleterious immune functions in experimental cerebral malaria (ECM). One of the platelet derived mediators we have identified as particularly important is platelet factor 4/CXCL4. Our prior work demonstrated that PF4βˆ’/βˆ’ mice are protected from ECM, have reduced plasma cytokines, and have reduced T-cell trafficking to the brain. We now show that PF4 drives monocyte cytokine production in a Kruppel like factor 4 (KLF4) dependent manner. Monocyte depleted Plasmodium berghei infected mice have improved survival, and KLF4 is greatly increased in control, but not monocyte depleted mice. PF4βˆ’/βˆ’ mice have less cerebral monocyte trafficking and no change in KLF4 expression. These data indicate that PF4 induction of monocyte KLF4 expression may be an important step in the pathogenesis of ECM

    Hydrogen peroxide regulation of endothelial exocytosis by inhibition of N-ethylmaleimide sensitive factor

    Get PDF
    Although an excess of reactive oxygen species (ROS) can damage the vasculature, low concentrations of ROS mediate intracellular signal transduction pathways. We hypothesized that hydrogen peroxide plays a beneficial role in the vasculature by inhibiting endothelial exocytosis that would otherwise induce vascular inflammation and thrombosis. We now show that endogenous H2O2 inhibits thrombin-induced exocytosis of granules from endothelial cells. H2O2 regulates exocytosis by inhibiting N-ethylmaleimide sensitive factor (NSF), a protein that regulates membrane fusion events necessary for exocytosis. H2O2 decreases the ability of NSF to hydrolyze adenosine triphosphate and to disassemble the soluble NSF attachment protein receptor complex. Mutation of NSF cysteine residue C264T eliminates the sensitivity of NSF to H2O2, suggesting that this cysteine residue is a redox sensor for NSF. Increasing endogenous H2O2 levels in mice decreases exocytosis and platelet rolling on venules in vivo. By inhibiting endothelial cell exocytosis, endogenous H2O2 may protect the vasculature from inflammation and thrombosis

    MicroRNA-22 Regulates Hypoxia Signaling in Colon Cancer Cells

    Get PDF
    MicroRNAs (MiRNAs) are short, non-coding RNA that regulate a variety of cellular functions by suppressing target protein expression. We hypothesized that a set of microRNA regulate tumor responses to hypoxia by inhibiting components of the hypoxia signaling pathway. We found that miR-22 expression in human colon cancer is lower than in normal colon tissue. We also found that miR-22 controls hypoxia inducible factor 1Ξ± (HIF-1Ξ±) expression in the HCT116 colon cancer cell line. Over-expression of miR-22 inhibits HIF-1Ξ± expression, repressing vascular endothelial growth factor (VEGF) production during hypoxia. Conversely, knockdown of endogenous miR-22 enhances hypoxia induced expression of HIF-1Ξ± and VEGF. The conditioned media from cells over-expressing miR-22 contain less VEGF protein than control cells, and also induce less endothelial cell growth and invasion, suggesting miR-22 in adjacent cells influences endothelial cell function. Taken together, our data suggest that miR-22 might have an anti-angiogenic effect in colon cancer

    Endothelial Cell Aging: How miRNAs Contribute?

    No full text
    Endothelial cells (ECs) form monolayers and line the interior surfaces of blood vessels in the entire body. In most mammalian systems, the capacity of endothelial cells to divide is limited and endothelial cells are prone to be senescent. Aging of ECs and resultant endothelial dysfunction lead to a variety of vascular diseases such as atherosclerosis, diabetes mellites, hypertension, and ischemic injury. However, the mechanism by which ECs get old and become senescent and the impact of endothelial senescence on the vascular function are not fully understood. Recent research has unveiled the crucial roles of miRNAs, which are small non-coding RNAs, in regulating endothelial cellular functions, including nitric oxide production, vascular inflammation, and anti-thromboformation. In this review, how senescent-related miRNAs are involved in controlling the functions of ECs will be discussed
    corecore