446 research outputs found

    The Electrostatic Persistence Length of Polymers beyond the OSF Limit

    Full text link
    We use large scale Monte Carlo simulations to test scaling theories for the electrostatic persistence length lel_e of isolated, uniformly charged polymers with \DH intrachain interactions in the limit where the screening length κ1\kappa^{-1} exceeds the intrinsic persistence length of the chains. Our simulations cover a significantly larger part of the parameter space than previous studies. We observe no significant deviations from the prediction leκ2l_e\propto\kappa^{-2} by Khokhlov and Khachaturian which is based on applying the Odijk-Skolnick-Fixman theory to the stretched de Gennes-Pincus-Velasco-Brochard polyelectrolyte blob chain. A linear or sublinear dependence of the persistence length on the screening length can be ruled out. We argue that previous numerical results pointing into this direction are probably due to a combination of excluded volume and finite chain length effects. The paper emphasizes the role of scaling arguments in the development of useful representations for experimental and simulation data.Comment: 11 pages, 7 figure

    AladynPi Adaptive Neural Network Molecular Dynamics Simulation Code with Physically Informed Potential: Computational Materials Mini-Application

    Get PDF
    This report provides an overview and description of commands used in the Computational Materials mini-application, AladynPi. AladynPi is an extension of a previously released mini-application, Aladyn (https://github.com/nasa/aladyn; Yamakov, V.I., and Glaessgen, E.H., NASA/TM-2018-220104). Aladyn and AladynPi are basic molecular dynamics codes written in FORTRAN 2003, which are designed to demonstrate the use of adaptive neural networks (ANNs) in atomistic simulations. The role of ANNs is to efficiently reproduce the very complex energy landscape resulting from the atomic interactions in materials with the accuracy of the more expensive quantum mechanics-based calculations. The ANN is trained on a large set of atomic structures calculated using the density functional theory method. An input for the ANN is a set of structure coefficients, characterizing the local atomic environment of each atom, for which the atomic energy is obtained in the ANN inference process. In Aladyn, the ANN gives directly the energy of interatomic interactions. In AladynPi, the ANN gives optimized parameters for a predefined empirical function, known as bond-order-potential (BOP). The parameterized BOP function is then used to calculate the energy. AladynPi code is being released to serve as a training testbed for students and professors in academia to explore possible optimization algorithms for parallel computing on multicore central processing unit (CPU) computers or computers utilizing manycore architectures based on graphic processing units (GPUs). The effort is supported by the High Performance Computing incubator (HPCi) project at NASA Langley Research Center

    Parallel Grand Canonical Monte Carlo (ParaGrandMC) Simulation Code

    Get PDF
    This report provides an overview of the Parallel Grand Canonical Monte Carlo (ParaGrandMC) simulation code. This is a highly scalable parallel FORTRAN code for simulating the thermodynamic evolution of metal alloy systems at the atomic level, and predicting the thermodynamic state, phase diagram, chemical composition and mechanical properties. The code is designed to simulate multi-component alloy systems, predict solid-state phase transformations such as austenite-martensite transformations, precipitate formation, recrystallization, capillary effects at interfaces, surface absorption, etc., which can aid the design of novel metallic alloys. While the software is mainly tailored for modeling metal alloys, it can also be used for other types of solid-state systems, and to some degree for liquid or gaseous systems, including multiphase systems forming solid-liquid-gas interfaces

    A Continuum-Atomistic Analysis of Transgranular Crack Propagation in Aluminum

    Get PDF
    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain is used to study plastic processes at a crack tip in a single crystal of aluminum. The case of mode I loading is studied. A transition from deformation twinning to full dislocation emission from the crack tip is found when the crack plane is rotated around the [111] crystallographic axis. When the crack plane normal coincides with the [112] twinning direction, the crack propagates through a twinning mechanism. When the crack plane normal coincides with the [011] slip direction, the crack propagates through the emission of full dislocations. In intermediate orientations, a transition from full dislocation emission to twinning is found to occur with an increase in the stress intensity at the crack tip. This finding confirms the suggestion that the very high strain rates, inherently present in MD simulations, which produce higher stress intensities at the crack tip, over-predict the tendency for deformation twinning compared to experiments. The present study, therefore, aims to develop a more realistic and accurate predictive modeling of fracture processes

    New Developments in the Embedded Statistical Coupling Method: Atomistic/Continuum Crack Propagation

    Get PDF
    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain has been enhanced. The concurrent MD-FEM coupling methodology uses statistical averaging of the deformation of the atomistic MD domain to provide interface displacement boundary conditions to the surrounding continuum FEM region, which, in turn, generates interface reaction forces that are applied as piecewise constant traction boundary conditions to the MD domain. The enhancement is based on the addition of molecular dynamics-based cohesive zone model (CZM) elements near the MD-FEM interface. The CZM elements are a continuum interpretation of the traction-displacement relationships taken from MD simulations using Cohesive Zone Volume Elements (CZVE). The addition of CZM elements to the concurrent MD-FEM analysis provides a consistent set of atomistically-based cohesive properties within the finite element region near the growing crack. Another set of CZVEs are then used to extract revised CZM relationships from the enhanced embedded statistical coupling method (ESCM) simulation of an edge crack under uniaxial loading

    An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses

    Get PDF
    The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied

    Atomistic Cohesive Zone Models for Interface Decohesion in Metals

    Get PDF
    Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship characterizing the load transfer across the plane of a growing edge crack is extracted from atomistic simulations for use within a continuum finite element model. The methodology for the atomistic derivation of a cohesive-zone law is presented. This procedure can be implemented to build cohesive-zone finite element models for simulating fracture in nanocrystalline or ultrafine grained materials

    Aladyn - Adaptive Neural Network Molecular Dynamics Simulation Code: Computational Materials Mini-Application

    Get PDF
    This report provides an overview and commands description of the Computational Materials mini-application, Aladyn. Aladyn is a simple molecular dynamics code written in FORTRAN 2008, which is designed to demonstrate the use of adaptive neural networks (ANNs) in atomistic simulations. The role of ANNs is to reproduce the very complex energy landscape resulting from the atomic interactions in materials with the accuracy of quantum mechanics-based energy calculations. The ANN is trained on a large set of atomic structures calculated using the density functional theory (DFT) method. The Aladyn code is being released to serve as a training testbed for students and professors in academia to explore possible optimization algorithms for parallel computing on multicore central processing unit (CPU) computers or computers utilizing many core architectures based on graphic processing units (GPUs). The effort is related to the High Performance Computing Incubator (HPCI) project at NASA Langley Research Center

    Multiscale Modeling of Damage Processes in fcc Aluminum: From Atoms to Grains

    Get PDF
    Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, current analysis is limited to small domains and increasing the size of the MD domain quickly presents intractable computational demands. A preferred approach to surmount this computational limitation has been to combine continuum mechanics-based modeling procedures, such as the finite element method (FEM), with MD analyses thereby reducing the region of atomic scale refinement. Such multiscale modeling strategies can be divided into two broad classifications: concurrent multiscale methods that directly incorporate an atomistic domain within a continuum domain and sequential multiscale methods that extract an averaged response from the atomistic simulation for later use as a constitutive model in a continuum analysis

    A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses

    Get PDF
    The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied
    corecore