5 research outputs found

    Phase control of magnons in the van der Waals antiferromagnet NiPS3_3

    Full text link
    We demonstrate phase control of magnons in the van der Waals antiferromagnet NiPS3_3 using optical excitation by polarized light. The sign of the coherent precession of spin amplitude changes upon (1) reversing the helicity of a circularly polarized pump beam, or (2) rotating the polarization of a linearly polarized pump by π/2\pi/2. Because these two excitation pathways have comparable generation efficiency, the phase of spin precession can be continuously tuned from 0 to 2π2\pi by controlling the polarization state of the pump pulse. The ability to excite magnons with a desired phase has potential applications in the design of a spin-wave phased array and ultrafast spin information processing

    Disentangling superconducting and magnetic orders in NaFe_1-xNi_xAs using muon spin rotation

    Full text link
    Muon spin rotation and relaxation studies have been performed on a "111" family of iron-based superconductors NaFe_1-xNi_xAs. Static magnetic order was characterized by obtaining the temperature and doping dependences of the local ordered magnetic moment size and the volume fraction of the magnetically ordered regions. For x = 0 and 0.4 %, a transition to a nearly-homogeneous long range magnetically ordered state is observed, while for higher x than 0.4 % magnetic order becomes more disordered and is completely suppressed for x = 1.5 %. The magnetic volume fraction continuously decreases with increasing x. The combination of magnetic and superconducting volumes implies that a spatially-overlapping coexistence of magnetism and superconductivity spans a large region of the T-x phase diagram for NaFe_1-xNi_xAs . A strong reduction of both the ordered moment size and the volume fraction is observed below the superconducting T_C for x = 0.6, 1.0, and 1.3 %, in contrast to other iron pnictides in which one of these two parameters exhibits a reduction below TC, but not both. The suppression of magnetic order is further enhanced with increased Ni doping, leading to a reentrant non-magnetic state below T_C for x = 1.3 %. The reentrant behavior indicates an interplay between antiferromagnetism and superconductivity involving competition for the same electrons. These observations are consistent with the sign-changing s-wave superconducting state, which is expected to appear on the verge of microscopic coexistence and phase separation with magnetism. We also present a universal linear relationship between the local ordered moment size and the antiferromagnetic ordering temperature TN across a variety of iron-based superconductors. We argue that this linear relationship is consistent with an itinerant-electron approach, in which Fermi surface nesting drives antiferromagnetic ordering.Comment: 20 pages, 14 figures, Correspondence should be addressed to Prof. Yasutomo Uemura: [email protected]
    corecore