9 research outputs found
FGF2 SUPPRESSED CCL11 EXPRESSION IN HUMAN DENTAL PULP-DERIVED MSCs
The regulation of the mesenchymal stem cell (MSC) programming mechanism promises great success in regenerative medicine. Tissue regeneration has been associated not only with the differentiation of MSCs, but also with the microenvironment of the stem cell niche that involves various cytokines and immune cells in the tissue regeneration site. In the present study, fibroblast growth factor 2 (FGF2), the principal growth factor for tooth development, dental pulp homeostasis and dentin repair, was reported to affect the expression of cytokines in human dental pulp‑derived MSCs. FGF2 significantly inhibited the expression of chemokine C‑C motif ligand 11 (CCL11) in a time‑ and dose‑dependent manner in the SDP11 human dental pulp‑derived MSC line. This inhibition was diminished following treatment with the AZD4547 FGF receptor (FGFR) inhibitor, indicating that FGF2 negatively regulated the expression of CCL11 in SDP11 cells. Furthermore, FGF2 activated the phosphorylation of p38 mitogen‑activated protein kinase (p38 MAPK), extracellular signal‑regulated kinase 1/2 (ERK1/2) and c‑Jun N‑terminal kinases (JNK) in SDP11 cells. The mechanism of the FGFR‑downstream signaling pathway was then studied using the SB203580, U0126 and SP600125 inhibitors for p38 MAPK, ERK1/2, and JNK, respectively. Interestingly, only treatment with SP600125 blocked the FGF2‑mediated suppression of CCL11. The present results suggested that FGF2 regulated the expression of cytokines and suppressed the expression of CCL11 via the JNK signaling pathway in human dental pulp‑derived MSCs. The present findings could provide important insights into the association of FGF2 and CCL11 in dental tissue regeneration therapy
ピエゾ型機械受容イオンチャネル1は間葉系幹細胞の分化運命決定の調節因子として機能する
The extracellular environment regulates the dynamic behaviors of cells. However, the effects of hydrostatic pressure (HP) on cell fate determination of mesenchymal stem cells (MSCs) are not clearly understood. Here, we established a cell culture chamber to control HP. Using this system, we found that the promotion of osteogenic differentiation by HP is depend on bone morphogenetic protein 2 (BMP2) expression regulated by Piezo type mechanosensitive ion channel component 1 (PIEZO1) in MSCs. The PIEZO1 was expressed and induced after HP loading in primary MSCs and MSC lines, UE7T-13 and SDP11. HP and Yoda1, an activator of PIEZO1, promoted BMP2 expression and osteoblast differentiation, whereas inhibits adipocyte differentiation. Conversely, PIEZO1 inhibition reduced osteoblast differentiation and BMP2 expression. Furthermore, Blocking of BMP2 function by noggin inhibits HP induced osteogenic maker genes expression. In addition, in an in vivo model of medaka with HP loading, HP promoted caudal fin ray development whereas inhibition of piezo1 using GsMTx4 suppressed its development. Thus, our results suggested that PIEZO1 is responsible for HP and could functions as a factor for cell fate determination of MSCs by regulating BMP2 expression
Iroquois homeobox 3 regulates odontoblast proliferation and differentiation mediated by Wnt5a expression
Iroquois homeobox (Irx) genes are TALE-class homeobox genes that are evolutionarily conserved across species and have multiple critical cellular functions in fundamental tissue development processes. Previous studies have shown that Irxs genes are expressed during tooth development. However, the precise roles of genes in teeth remain unclear. Here, we demonstrated for the first time that Irx3 is an essential molecule for the proliferation and differentiation of odontoblasts. Using cDNA synthesized from postnatal day 1 (P1) tooth germs, we examined the expression of all Irx genes (Irx1-Irx6) by RT-PCR and found that all genes except Irx4 were expressed in the tooth tissue. Irx1-Irx3 a were expressed in the dental epithelial cell line M3H1 cells, while Irx3 and Irx5 were expressed in the dental mesenchymal cell line mDP cells. Only Irx3 was expressed in both undifferentiated cell lines. Immunostaining also revealed the presence of IRX3 in the dental epithelial cells and mesenchymal condensation. Inhibition of endogenous Irx3 by siRNA blocks the proliferation and differentiation of mDP cells. Wnt3a, Wnt5a, and Bmp4 are factors involved in odontoblast differentiation and were highly expressed in mDP cells by quantitative PCR analysis. Interestingly, the expression of Wnt5a (but not Wnt3a or Bmp4) was suppressed by Irx3 siRNA. These results suggest that Irx3 plays an essential role in part through the regulation of Wnt5a expression during odontoblast proliferation and differentiation
COMBINATION OF IONS PROMOTES GINGIVAL FIBROBLAST MIGRATION
Wound healing is a dynamic process that involves highly coordinated cellular events, including proliferation and migration. Oral gingival fibroblasts serve a central role in maintaining oral mucosa homeostasis, and their functions include the coordination of physiological tissue repair. Recently, surface pre‑reacted glass‑ionomer (S‑PRG) fillers have been widely applied in the field of dental materials for the prevention of dental caries, due to an excellent ability to release fluoride (F). In addition to F, S‑PRG fillers are known to release several types of ions, including aluminum (Al), boron (B), sodium (Na), silicon (Si) and strontium (Sr). However, the influence of these ions on gingival fibroblasts remains unknown. The aim of the present study was to examine the effect of various concentrations of an S‑PRG filler eluate on the growth and migration of gingival fibroblasts. The human gingival fibroblast cell line HGF‑1 was treated with various dilutions of an eluent solution of S‑PRG, which contained 32.0 ppm Al, 1,488.6 ppm B, 505.0 ppm Na, 12.9 ppm Si, 156.5 ppm Sr and 136.5 ppm F. Treatment with eluate at a dilution of 1:10,000 was observed to significantly promote the migration of HGF‑1 cells. In addition, the current study evaluated the mechanism underlying the mediated cell migration by the S‑PRG solution and revealed that it activated the phosphorylation of extracellular signal‑regulated kinase 1/2 (ERK1/2), but not of p38. Furthermore, treatment with a MEK inhibitor blocked the cell migration induced by the solution. Taken together, these results suggest that S‑PRG fillers can stimulate HGF‑1 cell migration via the ERK1/2 signaling pathway, indicating that a dental material containing this type of filler is useful for oral mucosa homeostasis and wound healing
Prevention of Sports-related Dental Injuries in Children
A sports-related dental injury is defined as injuries to the oral and maxillofacial regions associated with sports activities, and involves tooth fracture and luxation, facial bone and temporomandibular fractures, and soft tissue injury. Participants in sports activities are always at risk for traumatic injury, with the oral and maxillofacial region often affected. Dental injuries also have a high rate of occurrence among sports-related injuries received during school physical education classes and club activities. Unfortunately, nearly all such dental injuries are irreversible, and the loss of teeth or their supporting tissues has a significant impact on the quality of life of affected individuals. Thus, for prevention of sports-related dental injuries, it is important for dental professionals to disseminate correct knowledge regarding oral health, as well as provide information to reduce and treat risk factors such as dental caries, periodontal disease, and occlusal problems. In particular, use of mouthguard is one of the most effective ways to prevent sports-related dental injuries that occur in sports and physical activity participants. Recently, along with increased health consciousness, the number of individuals who participate in sports and fitness activities is also increasing. Outside of the bounds of conventional dental clinical treatment, dentists are encouraged to actively be involved in local and regional organizations related to sports, recreation, and physical activity opportunities, in order to contribute to promotion of safety and health, including injury prevention. In this review, we discuss various findings to prevention of sports-related dental injuries in children