7,098 research outputs found

    Combination of improved multibondic method and the Wang-Landau method

    Full text link
    We propose a method for Monte Carlo simulation of statistical physical models with discretized energy. The method is based on several ideas including the cluster algorithm, the multicanonical Monte Carlo method and its acceleration proposed recently by Wang and Landau. As in the multibondic ensemble method proposed by Janke and Kappler, the present algorithm performs a random walk in the space of the bond population to yield the state density as a function of the bond number. A test on the Ising model shows that the number of Monte Carlo sweeps required of the present method for obtaining the density of state with a given accuracy is proportional to the system size, whereas it is proportional to the system size squared for other conventional methods. In addition, the new method shows a better performance than the original Wang-Landau method in measurement of physical quantities.Comment: 12 pages, 3 figure

    D-branes in PP-Waves and Massive Theories on Worldsheet with Boundary

    Get PDF
    We investigate the supersymmetric D-brane configurations in the pp-wave backgrounds proposed by Maldacena and Maoz. We study the surviving supersymmetry in a D-brane configuration from the worldvolume point of view. When we restrict ourselves to the background with N=(2,2) supersymmetry and no holomorphic Killing vector term, there are two types of supersymmetric D-branes: A-type and B-type. An A-type brane is wrapped on a special Lagrangian submanifold, and the imaginary part of the superpotential should be constant on its worldvolume. On the other hand, a B-type brane is wrapped on a complex submanifold, and the superpotential should be constant on its worldvolume. The results are almost consistent with the worldsheet theory in the lightcone gauge. The inclusion of gauge fields is also discussed and found BPS D-branes with the gauge field excitations. Furthermore, we consider the backgrounds with holomorphic Killing vector terms and N=(1,1) supersymmetric backgrounds.Comment: 27 pages, LaTeX, no figure. v2: typos corrected, comments added, references added. v3: typos corrected, comments added, references added. v4:typos correcte

    Melamine formaldehyde-metal organic gel interpenetrating polymer network derived intrinsic Fe-N-doped porous graphitic carbon electrocatalysts for oxygen reduction reaction

    Get PDF
    Fe, N doped porous graphitic carbon electrocatalyst (Fe-MOG-MF-C), obtained by pyrolysis of an Interpenetrating Polymer Network (IPN) comprised of melamine formaldehyde (MF as hard segment) and Metal-Organic Gel (MOG as soft segment), exhibited significant Oxygen Reduction Reaction (ORR) activity in alkaline medium. BET surface area analysis of Fe-MOG-MF-C showed high surface area (821 m2 g-1), while TEM, Raman and XPS results confirmed Fe and N co-doping. Furthermore, a modulated porous morphology with a higher degree of surface area (950 m2 g-1) has been accomplished for the system (Fe-MOG-MFN-C) when aided by a sublimable porogen, such as naphthalene. XPS results further demonstrated that these systems exhibited a better degree of distribution of graphitic N and an onset potential value of 0.91 V vs. RHE in 0.1 M KOH solution following an efficient four-electron ORR pathway. The electrocatalytic activity of Fe-MOG-MFN-C is superior to that of Fe-MOG-MF-C by virtue of its higher graphitic N content and surface area. Thus, the study presents a new class of IPN derived MF-MOG nanocomposites with the potential to generate extended versions of in situ Fe-N doped porous graphitic carbon structures with superior ORR activity

    Recent Developments of World-Line Monte Carlo Methods

    Full text link
    World-line quantum Monte Carlo methods are reviewed with an emphasis on breakthroughs made in recent years. In particular, three algorithms -- the loop algorithm, the worm algorithm, and the directed-loop algorithm -- for updating world-line configurations are presented in a unified perspective. Detailed descriptions of the algorithms in specific cases are also given.Comment: To appear in Journal of Physical Society of Japa

    Bottom-Tau Unification in SUSY SU(5) GUT and Constraints from b to s gamma and Muon g-2

    Full text link
    An analysis is made on bottom-tau Yukawa unification in supersymmetric (SUSY) SU(5) grand unified theory (GUT) in the framework of minimal supergravity, in which the parameter space is restricted by some experimental constraints including Br(b to s gamma) and muon g-2. The bottom-tau unification can be accommodated to the measured branching ratio Br(b to s gamma) if superparticle masses are relatively heavy and higgsino mass parameter \mu is negative. On the other hand, if we take the latest muon g-2 data to require positive SUSY contributions, then wrong-sign threshold corrections at SUSY scale upset the Yukawa unification with more than 20 percent discrepancy. It has to be compensated by superheavy threshold corrections around the GUT scale, which constrains models of flavor in SUSY GUT. A pattern of the superparticle masses preferred by the three requirements is also commented.Comment: 21pages, 6figure

    Observational consequences of the Standard Model Higgs inflation variants

    Full text link
    We consider the possibility to observationally differentiate the Standard Model (SM) Higgs driven inflation with non-minimal couplingto gravity from other variants of SM Higgs inflation based on the scalar field theories with non-canonical kinetic term such as Galileon-like kinetic term and kinetic term with non-minimal derivative coupling to the Einstein tensor. In order to ensure consistent results, we study the SM Higgs inflation variants by using the same method, computing the full dynamics of the background and perturbations of the Higgs field during inflation at quantum level. Assuming that all the SM Higgs inflation variants are consistent theories, we use the MCMC technique to derive constraints on the inflationnoary parameters and the Higgs boson mass from their fit to WMAP7+SN+BAO data set. We conclude that a combination of a Higgs mass measurement by the LHC and accurate determination by the PLANCK satellite of the spectral index of curvature perturbations and tensor-to-scalar ratio will enable to distinguish among these models. We also show that the consistency relations of the SM Higgs inflation variants are distinct enough to differentiate the models.Comment: 22 pages, 4 figure

    Structure and Colors of Diffuse Emission in the Spitzer Galactic First Look Survey

    Full text link
    We investigate the density structure of the interstellar medium using new high-resolution maps of the 8 micron, 24 micron, and 70 micron surface brightness towards a molecular cloud in the Gum Nebula, made as part of the Spitzer Space Telescope Galactic First Look Survey. The maps are correlated with 100 micron images measured with IRAS. At 24 and 70 micron, the spatial power spectrum of surface brightness follows a power law with spectral index -3.5. At 24 micron, the power law behavior is remarkably consistent from the 0.2 degree size of our maps down to the 5 arcsecond spatial resolution. Thus, the structure of the 24 micron emission is self-similar even at milliparsec scales. The combined power spectrum produced from Spitzer 24 micron and IRAS 25 micron images is consistent with a change in the power law exponent from -2.6 to -3.5. The decrease may be due to the transition from a two-dimensional to three-dimensional structure. Under this hypothesis, we estimate the thickness of the emitting medium to be 0.3 pc.Comment: 13 Pages, 3 Figures, to be published in Astrophysical Journal Supplement Series (Spitzer Special Issue), volume 154. Uses aastex v5.

    Broad histogram relation for the bond number and its applications

    Full text link
    We discuss Monte Carlo methods based on the cluster (graph) representation for spin models. We derive a rigorous broad histogram relation (BHR) for the bond number; a counterpart for the energy was derived by Oliveira previously. A Monte Carlo dynamics based on the number of potential moves for the bond number is proposed. We show the efficiency of the BHR for the bond number in calculating the density of states and other physical quantities.Comment: 7 pages, 7 figure

    The Thermal Renormalization Group for Fermions, Universality, and the Chiral Phase-Transition

    Get PDF
    We formulate the thermal renormalization group, an implementation of the Wilsonian RG in the real-time (CTP) formulation of finite temperature field theory, for fermionic fields. Using a model with scalar and fermionic degrees of freedom which should describe the two-flavor chiral phase-transition, we discuss the mechanism behind fermion decoupling and universality at second order transitions. It turns out that an effective mass-like term in the fermion propagator which is due to thermal fluctuations and does not break chiral symmetry is necessary for fermion decoupling to work. This situation is in contrast to the high-temperature limit, where the dominance of scalar over fermionic degrees of freedom is due to the different behavior of the distribution functions. The mass-like contribution is the leading thermal effect in the fermionic sector and is missed if a derivative expansion of the fermionic propagator is performed. We also discuss results on the phase-transition of the model considered where we find good agreement with results from other methods.Comment: References added, minor typos correcte

    Supernova Remnants as Clues to Their Progenitors

    Full text link
    Supernovae shape the interstellar medium, chemically enrich their host galaxies, and generate powerful interstellar shocks that drive future generations of star formation. The shock produced by a supernova event acts as a type of time machine, probing the mass loss history of the progenitor system back to ages of \sim 10 000 years before the explosion, whereas supernova remnants probe a much earlier stage of stellar evolution, interacting with material expelled during the progenitor's much earlier evolution. In this chapter we will review how observations of supernova remnants allow us to infer fundamental properties of the progenitor system. We will provide detailed examples of how bulk characteristics of a remnant, such as its chemical composition and dynamics, allow us to infer properties of the progenitor evolution. In the latter half of this chapter, we will show how this exercise may be extended from individual objects to SNR as classes of objects, and how there are clear bifurcations in the dynamics and spectral characteristics of core collapse and thermonuclear supernova remnants. We will finish the chapter by touching on recent advances in the modeling of massive stars, and the implications for observable properties of supernovae and their remnants.Comment: A chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin (18 pages, 6 figures
    corecore