7,098 research outputs found
Combination of improved multibondic method and the Wang-Landau method
We propose a method for Monte Carlo simulation of statistical physical models
with discretized energy. The method is based on several ideas including the
cluster algorithm, the multicanonical Monte Carlo method and its acceleration
proposed recently by Wang and Landau. As in the multibondic ensemble method
proposed by Janke and Kappler, the present algorithm performs a random walk in
the space of the bond population to yield the state density as a function of
the bond number. A test on the Ising model shows that the number of Monte Carlo
sweeps required of the present method for obtaining the density of state with a
given accuracy is proportional to the system size, whereas it is proportional
to the system size squared for other conventional methods. In addition, the new
method shows a better performance than the original Wang-Landau method in
measurement of physical quantities.Comment: 12 pages, 3 figure
D-branes in PP-Waves and Massive Theories on Worldsheet with Boundary
We investigate the supersymmetric D-brane configurations in the pp-wave
backgrounds proposed by Maldacena and Maoz. We study the surviving
supersymmetry in a D-brane configuration from the worldvolume point of view.
When we restrict ourselves to the background with N=(2,2) supersymmetry and no
holomorphic Killing vector term, there are two types of supersymmetric
D-branes: A-type and B-type. An A-type brane is wrapped on a special Lagrangian
submanifold, and the imaginary part of the superpotential should be constant on
its worldvolume. On the other hand, a B-type brane is wrapped on a complex
submanifold, and the superpotential should be constant on its worldvolume. The
results are almost consistent with the worldsheet theory in the lightcone
gauge. The inclusion of gauge fields is also discussed and found BPS D-branes
with the gauge field excitations. Furthermore, we consider the backgrounds with
holomorphic Killing vector terms and N=(1,1) supersymmetric backgrounds.Comment: 27 pages, LaTeX, no figure. v2: typos corrected, comments added,
references added. v3: typos corrected, comments added, references added.
v4:typos correcte
Melamine formaldehyde-metal organic gel interpenetrating polymer network derived intrinsic Fe-N-doped porous graphitic carbon electrocatalysts for oxygen reduction reaction
Fe, N doped porous graphitic carbon electrocatalyst (Fe-MOG-MF-C), obtained by pyrolysis of an Interpenetrating Polymer Network (IPN) comprised of melamine formaldehyde (MF as hard segment) and Metal-Organic Gel (MOG as soft segment), exhibited significant Oxygen Reduction Reaction (ORR) activity in alkaline medium. BET surface area analysis of Fe-MOG-MF-C showed high surface area (821 m2 g-1), while TEM, Raman and XPS results confirmed Fe and N co-doping. Furthermore, a modulated porous morphology with a higher degree of surface area (950 m2 g-1) has been accomplished for the system (Fe-MOG-MFN-C) when aided by a sublimable porogen, such as naphthalene. XPS results further demonstrated that these systems exhibited a better degree of distribution of graphitic N and an onset potential value of 0.91 V vs. RHE in 0.1 M KOH solution following an efficient four-electron ORR pathway. The electrocatalytic activity of Fe-MOG-MFN-C is superior to that of Fe-MOG-MF-C by virtue of its higher graphitic N content and surface area. Thus, the study presents a new class of IPN derived MF-MOG nanocomposites with the potential to generate extended versions of in situ Fe-N doped porous graphitic carbon structures with superior ORR activity
Recent Developments of World-Line Monte Carlo Methods
World-line quantum Monte Carlo methods are reviewed with an emphasis on
breakthroughs made in recent years. In particular, three algorithms -- the loop
algorithm, the worm algorithm, and the directed-loop algorithm -- for updating
world-line configurations are presented in a unified perspective. Detailed
descriptions of the algorithms in specific cases are also given.Comment: To appear in Journal of Physical Society of Japa
Bottom-Tau Unification in SUSY SU(5) GUT and Constraints from b to s gamma and Muon g-2
An analysis is made on bottom-tau Yukawa unification in supersymmetric (SUSY)
SU(5) grand unified theory (GUT) in the framework of minimal supergravity, in
which the parameter space is restricted by some experimental constraints
including Br(b to s gamma) and muon g-2. The bottom-tau unification can be
accommodated to the measured branching ratio Br(b to s gamma) if superparticle
masses are relatively heavy and higgsino mass parameter \mu is negative. On the
other hand, if we take the latest muon g-2 data to require positive SUSY
contributions, then wrong-sign threshold corrections at SUSY scale upset the
Yukawa unification with more than 20 percent discrepancy. It has to be
compensated by superheavy threshold corrections around the GUT scale, which
constrains models of flavor in SUSY GUT. A pattern of the superparticle masses
preferred by the three requirements is also commented.Comment: 21pages, 6figure
Observational consequences of the Standard Model Higgs inflation variants
We consider the possibility to observationally differentiate the Standard
Model (SM) Higgs driven inflation with non-minimal couplingto gravity from
other variants of SM Higgs inflation based on the scalar field theories with
non-canonical kinetic term such as Galileon-like kinetic term and kinetic term
with non-minimal derivative coupling to the Einstein tensor. In order to ensure
consistent results, we study the SM Higgs inflation variants by using the same
method, computing the full dynamics of the background and perturbations of the
Higgs field during inflation at quantum level. Assuming that all the SM Higgs
inflation variants are consistent theories, we use the MCMC technique to derive
constraints on the inflationnoary parameters and the Higgs boson mass from
their fit to WMAP7+SN+BAO data set. We conclude that a combination of a Higgs
mass measurement by the LHC and accurate determination by the PLANCK satellite
of the spectral index of curvature perturbations and tensor-to-scalar ratio
will enable to distinguish among these models. We also show that the
consistency relations of the SM Higgs inflation variants are distinct enough to
differentiate the models.Comment: 22 pages, 4 figure
Structure and Colors of Diffuse Emission in the Spitzer Galactic First Look Survey
We investigate the density structure of the interstellar medium using new
high-resolution maps of the 8 micron, 24 micron, and 70 micron surface
brightness towards a molecular cloud in the Gum Nebula, made as part of the
Spitzer Space Telescope Galactic First Look Survey. The maps are correlated
with 100 micron images measured with IRAS. At 24 and 70 micron, the spatial
power spectrum of surface brightness follows a power law with spectral index
-3.5. At 24 micron, the power law behavior is remarkably consistent from the
0.2 degree size of our maps down to the 5 arcsecond spatial resolution. Thus,
the structure of the 24 micron emission is self-similar even at milliparsec
scales. The combined power spectrum produced from Spitzer 24 micron and IRAS 25
micron images is consistent with a change in the power law exponent from -2.6
to -3.5. The decrease may be due to the transition from a two-dimensional to
three-dimensional structure. Under this hypothesis, we estimate the thickness
of the emitting medium to be 0.3 pc.Comment: 13 Pages, 3 Figures, to be published in Astrophysical Journal
Supplement Series (Spitzer Special Issue), volume 154. Uses aastex v5.
Broad histogram relation for the bond number and its applications
We discuss Monte Carlo methods based on the cluster (graph) representation
for spin models. We derive a rigorous broad histogram relation (BHR) for the
bond number; a counterpart for the energy was derived by Oliveira previously. A
Monte Carlo dynamics based on the number of potential moves for the bond number
is proposed. We show the efficiency of the BHR for the bond number in
calculating the density of states and other physical quantities.Comment: 7 pages, 7 figure
The Thermal Renormalization Group for Fermions, Universality, and the Chiral Phase-Transition
We formulate the thermal renormalization group, an implementation of the
Wilsonian RG in the real-time (CTP) formulation of finite temperature field
theory, for fermionic fields. Using a model with scalar and fermionic degrees
of freedom which should describe the two-flavor chiral phase-transition, we
discuss the mechanism behind fermion decoupling and universality at second
order transitions. It turns out that an effective mass-like term in the fermion
propagator which is due to thermal fluctuations and does not break chiral
symmetry is necessary for fermion decoupling to work. This situation is in
contrast to the high-temperature limit, where the dominance of scalar over
fermionic degrees of freedom is due to the different behavior of the
distribution functions. The mass-like contribution is the leading thermal
effect in the fermionic sector and is missed if a derivative expansion of the
fermionic propagator is performed. We also discuss results on the
phase-transition of the model considered where we find good agreement with
results from other methods.Comment: References added, minor typos correcte
Supernova Remnants as Clues to Their Progenitors
Supernovae shape the interstellar medium, chemically enrich their host
galaxies, and generate powerful interstellar shocks that drive future
generations of star formation. The shock produced by a supernova event acts as
a type of time machine, probing the mass loss history of the progenitor system
back to ages of 10 000 years before the explosion, whereas supernova
remnants probe a much earlier stage of stellar evolution, interacting with
material expelled during the progenitor's much earlier evolution. In this
chapter we will review how observations of supernova remnants allow us to infer
fundamental properties of the progenitor system. We will provide detailed
examples of how bulk characteristics of a remnant, such as its chemical
composition and dynamics, allow us to infer properties of the progenitor
evolution. In the latter half of this chapter, we will show how this exercise
may be extended from individual objects to SNR as classes of objects, and how
there are clear bifurcations in the dynamics and spectral characteristics of
core collapse and thermonuclear supernova remnants. We will finish the chapter
by touching on recent advances in the modeling of massive stars, and the
implications for observable properties of supernovae and their remnants.Comment: A chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and
Paul Murdin (18 pages, 6 figures
- …