108 research outputs found

    Japanese Design Law and Practice

    Get PDF

    Vibrational Relaxation of Diatomic Molecules in Rarefied Gas Flows

    Get PDF
    Abstract. The direct simulation Monte Carlo (DSMC) method is widely used for simulations of rarefied gas flows. To make a vibrational relaxation model of diatomic molecules for the DSMC method, the collisions of diatomic molecules are investigated numerically. The collision cross section for vibrational relaxation can be described as a function of the relative translational energy, the rotational energy and the vibrational energy level of each colliding molecule. Thus the collision cross section could be evaluated with the Monte Carlo integration for these parameters. To achieve this idea, a lot of collisions with appropriate initial conditions should be calculated and analyzed statistically. A collision is simulated with the Semiclassical approach in which the vibrational energy is treated quantum mechanically and the rotational and the relative translational energies are treated classically. For the comparison of methods, the Quasiclassical approach is applied. The simulation by this method is the same as that by the classical method, and the obtained vibrational energy is discretized to the quantum level. The intermolecular potential is also compared between two different types that are the site-to-site Lennard-Jones and the Billing-Fisher potential

    A Vaspin-HSPA1L complex protects proximal tubular cells from organelle stress in diabetic kidney disease

    Get PDF
    Proximal tubular cells (PTCs) are crucial for maintaining renal homeostasis, and tubular injuries contribute to progression of diabetic kidney disease (DKD). However, the roles of visceral adipose tissue-derived serine protease inhibitor (vaspin) in the development of DKD is not known. We found vaspin maintains PTCs through ameliorating ER stress, autophagy impairment, and lysosome dysfunction in DKD. Vaspin-/- obese mice showed enlarged and leaky lysosomes in PTCs associated with increased apoptosis, and these abnormalities were also observed in the patients with DKD. During internalization into PTCs, vaspin formed a complex with heat shock protein family A (Hsp70) member 1 like (HSPA1L) as well as 78kDa glucose-regulated protein (GRP78). Both vaspin-partners bind to clathrin heavy chain and involve in the endocytosis. Notably, albumin-overload enhanced extracellular release of HSPA1L and overexpression of HSPA1L dissolved organelle stresses, especially autophagy impairment. Thus, vapsin/HSPA1L-mediated pathways play critical roles in maintaining organellar function of PTCs in DKD

    Non-destructive high-throughput measurement of elastic-viscous properties of maize using a novel ultra-micro sensor array and numerical validation

    Get PDF
    振動工学と農学の融合により、倒れにくい飼料トウモロコシの迅速選抜手法を開発. 京都大学プレスリリース. 2023-04-27.Maize is the world's most produced cereal crop, and the selection of maize cultivars with a high stem elastic modulus is an effective method to prevent cereal crop lodging. We developed an ultra-compact sensor array inspired by earthquake engineering and proposed a method for the high-throughput evaluation of the elastic modulus of maize cultivars. A natural vibration analysis based on the obtained Young’s modulus using finite element analysis (FEA) was performed and compared with the experimental results, which showed that the estimated Young’s modulus is representative of the individual Young’s modulus. FEA also showed the hotspot where the stalk was most deformed when the corn was vibrated by wind. The six tested cultivars were divided into two phenotypic groups based on the position and number of hotspots. In this study, we proposed a non-destructive high-throughput phenotyping technique for estimating the modulus of elasticity of maize stalks and successfully visualized which parts of the stalks should be improved for specific cultivars to prevent lodging

    T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis

    Get PDF
    This report shows that highly self-reactive T cells produced in mice as a result of genetically altered thymic T cell selection spontaneously differentiate into interleukin (IL)-17–secreting CD4+ helper T (Th) cells (Th17 cells), which mediate an autoimmune arthritis that clinically and immunologically resembles rheumatoid arthritis (RA). The thymus-produced self-reactive T cells, which become activated in the periphery via recognition of major histocompatibility complex/self-peptide complexes, stimulate antigen-presenting cells (APCs) to secrete IL-6. APC-derived IL-6, together with T cell–derived IL-6, drives naive self-reactive T cells to differentiate into arthritogenic Th17 cells. Deficiency of either IL-17 or IL-6 completely inhibits arthritis development, whereas interferon (IFN)-γ deficiency exacerbates it. The generation, differentiation, and persistence of arthritogenic Th17 cells per se are, however, insufficient for producing overt autoimmune arthritis. Yet overt disease is precipitated by further expansion and activation of autoimmune Th17 cells, for example, via IFN-γ deficiency, homeostatic proliferation, or stimulation of innate immunity by microbial products. Thus, a genetically determined T cell self-reactivity forms a cytokine milieu that facilitates preferential differentiation of self-reactive T cells into Th17 cells. Extrinsic or intrinsic stimuli further expand these cells, thereby triggering autoimmune disease. Intervention in these events at cellular and molecular levels is useful to treat and prevent autoimmune disease, in particular RA

    Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction

    Get PDF
    In autoimmune arthritis, traditionally classified as a T helper (Th) type 1 disease, the activation of T cells results in bone destruction mediated by osteoclasts, but how T cells enhance osteoclastogenesis despite the anti-osteoclastogenic effect of interferon (IFN)-γ remains to be elucidated. Here, we examine the effect of various Th cell subsets on osteoclastogenesis and identify Th17, a specialized inflammatory subset, as an osteoclastogenic Th cell subset that links T cell activation and bone resorption. The interleukin (IL)-23–IL-17 axis, rather than the IL-12–IFN-γ axis, is critical not only for the onset phase, but also for the bone destruction phase of autoimmune arthritis. Thus, Th17 is a powerful therapeutic target for the bone destruction associated with T cell activation
    corecore