53 research outputs found

    Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys

    Get PDF
    Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys.BackgroundThe proliferation of mural epithelial cells is a major cause of progressive cyst enlargement in autosomal-dominant polycystic kidney disease (ADPKD). Adenosine 3′, 5′ cyclic monophosphate (cAMP) stimulates the proliferation of cells from ADPKD cysts, but not cells from normal human kidney cortex (HKC), through the activation of protein kinase A (PKA), mitogen-activated protein kinase kinase (MEK), and extracellular signal-regulated kinase (ERK/MAPK). In the current study, we examined the signaling pathway between PKA and MEK in ADPKD and HKC cells.MethodsPrimary cultures of human ADPKD and HKC cells were prepared from nephrectomy specimens. We determined the effects of cAMP and epidermal growth factor (EGF) on the activation of ERK, B-Raf and Raf-1 in ADPKD and HKC cells by immune kinase assay and Western blot.Results8-Br-cAMP increased phosphorylated ERK (2.7- ± 0.6-fold, N = 7), and B-Raf kinase activity (3.6- ± 1.1-fold, N = 5) in cells from ADPKD kidneys; levels of phosphorylated Raf-1 were not changed. Inhibition of PKA by H89 strikingly decreased cAMP-stimulated phosphorylation of ERK and B-Raf, and MAPK inhibition by PD98059 blocked the effect of the nucleotide to activate ERK. By contrast, in HKC cells 8-Br-cAMP did not activate B-Raf and ERK. EGF stimulated the phosphorylation of ERK and Raf-1 in both ADPKD and HKC cells, but had no effect on B-Raf. 8-Br-cAMP and EGF conjointly increased ERK activation above that of either agonist alone in ADPKD cells, and this combined effect was abolished by PD98059, indicating that ERK was activated by EGF- and cAMP-responsive cascades that converge at MAPK.ConclusioncAMP activates ERK and increases proliferation of ADPKD epithelial cells, but not cells from normal human kidney cortex, through the sequential phosphorylation of PKA, B-Raf and MAPK in a pathway separate from, but complementary to, the classical receptor tyrosine kinase cascade. Consequently, cAMP and EGF have great potential to accelerate the progressive enlargement of renal cysts

    Global Gene Expression Profiling in PPAR-γ Agonist-Treated Kidneys in an Orthologous Rat Model of Human Autosomal Recessive Polycystic Kidney Disease

    Get PDF
    Kidneys are enlarged by aberrant proliferation of tubule epithelial cells leading to the formation of numerous cysts, nephron loss, and interstitial fibrosis in polycystic kidney disease (PKD). Pioglitazone (PIO), a PPAR-γ agonist, decreased cell proliferation, interstitial fibrosis, and inflammation, and ameliorated PKD progression in PCK rats (Am. J. Physiol.-Renal, 2011). To explore genetic mechanisms involved, changes in global gene expression were analyzed. By Gene Set Enrichment Analysis of 30655 genes, 13 of the top 20 downregulated gene ontology biological process gene sets and six of the top 20 curated gene set canonical pathways identified to be downregulated by PIOtreatment were related to cell cycle and proliferation, including EGF, PDGF and JNK pathways. Their relevant pathways were identified using the Kyoto Encyclopedia of Gene and Genomes database. Stearoyl-coenzyme A desaturase 1 is a key enzyme in fatty acid metabolism found in the top 5 genes downregulated by PIO treatment. Immunohistochemical analysis revealed that the gene product of this enzyme was highly expressed in PCK kidneys and decreased by PIO. These data show that PIO alters the expression of genes involved in cell cycle progression, cell proliferation, and fatty acid metabolism

    Review of the Use of Animal Models of Human Polycystic Kidney Disease for the Evaluation of Experimental Therapeutic Modalities

    No full text
    Autosomal dominant polycystic kidney disease, autosomal recessive polycystic kidney disease, and nephronophthisis are hereditary disorders with the occurrence of numerous cysts in both kidneys, often causing chronic and end-stage renal failure. Animal models have played an important role in recent advances in research not only on disease onset and progressive mechanisms but also on the development of therapeutic interventions. For a long time, spontaneous animal models have been used as the primary focus for human diseases; however, after the identification of the nucleotide sequence of the responsible genes, PKD1, PKD2, PKHD1, and NPHPs, various types of genetically modified models were developed by genetic and reproductive engineering techniques and played the leading role in the research field. In this review, we present murine models of hereditary renal cystic diseases, discussing their potential benefits in the development of therapeutic strategies

    Efficient Expression of Mono- and Diacylglycerol Lipase Gene from Penicillium camembertii

    No full text

    Increased salt intake does not worsen the progression of renal cystic disease in high water-loaded PCK rats.

    No full text
    The anti-diuretic hormone arginine vasopressin is thought to be a detrimental factor in polycystic kidney disease (PKD). We previously reported that high water intake (HWI) reduced urine osmolality and urinary arginine vasopressin, improved renal function, and reduced the kidney/body weight ratio in PCK rats, an orthologous model of human PKD. In PKD patients, however, it is reported that HWI increases total kidney volume, urine volume, and urine sodium excretion, which could be a consequence of high salt intake. In the current study, we loaded PCK rats with high salt concurrently with HWI to determine whether this human-imitated condition exacerbates disease progression. PCK rats were assigned into 4 groups: control group (CONT: distilled water), HWI group (HWI: 5% glucose in water), HWI with 0.2% NaCl group (HWI+0.2%NaCl), and HWI with 0.45% NaCl group (HWI+0.45%NaCl). Total water intake during the experimental period was increased by 1.86-, 2.02-, and 2.42-fold in HWI, HWI+0.2%NaCl, and HWI+0.45%NaCl, and sodium intake was increased by 2.55- and 5.83-fold in HWI+0.2%NaCl and HWI+0.45%NaCl, respectively, compared with CONT. Systolic blood pressure was higher in HWI+0.2%NaCl and HWI+0.45%NaCl than in both CONT and HWI. Serum urea nitrogen, kidney/body weight ratio, cAMP, cystic area, and fibrosis index were significantly lower in HWI compared with CONT, and these ameliorative effects were not abrogated in either HWI+0.2%NaCl or HWI+0.45%NaCl. The amount of sodium excreted into the urine was increased by 2.50- and 8.38-fold in HWI+0.2%NaCl and HWI+0.45%NaCl, respectively, compared with HWI. Serum sodium levels were not different between the groups. These findings indicate that the beneficial effect of HWI against the progression of cystic kidney disease was not affected even by high salt-overload in this rodent model of PKD
    corecore