1,064 research outputs found

    Exotic criticality in the dimerized spin-1 XXZXXZ chain with single-ion anisotropy

    Full text link
    We consider the dimerized spin-1 XXZXXZ chain with single-ion anisotropy DD. In absence of an explicit dimerization there are three phases: a large-DD, an antiferromagnetically ordered and a Haldane phase. This phase structure persists up to a critical dimerization, above which the Haldane phase disappears. We show that for weak dimerization the phases are separated by Gaussian and Ising quantum phase transitions. One of the Ising transitions terminates in a critical point in the universality class of the dilute Ising model. We comment on the relevance of our results to experiments on quasi-one-dimensional anisotropic spin-1 quantum magnets.Comment: Received the Select label. 20 pages, 7 figures, final versio

    Generalized vulnerability extrapolation using abstract syntax trees

    Full text link
    The discovery of vulnerabilities in source code is a key for securing computer systems. While specific types of security flaws can be identified automatically, in the general case the process of finding vulnerabilities cannot be automated and vulnerabilities are mainly discovered by manual analysis. In this paper, we propose a method for assisting a security an-alyst during auditing of source code. Our method proceeds by extracting abstract syntax trees from the code and de-termining structural patterns in these trees, such that each function in the code can be described as a mixture of these patterns. This representation enables us to decompose a known vulnerability and extrapolate it to a code base, such that functions potentially suffering from the same flaw can be suggested to the analyst. We evaluate our method on the source code of four popular open-source projects: LibTIFF, FFmpeg, Pidgin and Asterisk. For three of these projects, we are able to identify zero-day vulnerabilities by inspecting only a small fraction of the code bases. 1

    Evaluation of 14 PFAS for permeability and organic anion transporter interactions: Implications for renal clearance in humans

    Get PDF
    Per- and polyfluoroalkyl substances (PFAS) encompass a diverse group of synthetic fluorinated chemicals known to elicit adverse health effects in animals and humans. However, only a few studies investigated the mechanisms underlying clearance of PFAS. Herein, the relevance of human renal transporters and permeability to clearance and bioaccumulation for 14 PFAS containing three to eleven perfluorinated carbon atoms (ηpfc = 3–11) and several functional head-groups was investigated. Apparent permeabilities and interactions with human transporters were measured using in vitro cell-based assays, including the MDCK-LE cell line, and HEK293 stable transfected cell lines expressing organic anion transporter (OAT) 1–4 and organic cation transporter (OCT) 2. The results generated align with the Extended Clearance Classification System (ECCS), affirming that permeability, molecular weight, and ionization serve as robust predictors of clearance and renal transporter engagement. Notably, PFAS with low permeability (ECCS 3A and 3B) exhibited substantial substrate activity for OAT1 and OAT3, indicative of active renal secretion. Furthermore, we highlight the potential contribution of OAT4-mediated reabsorption to the renal clearance of PFAS with short ηpfc, such as perfluorohexane sulfonate (PFHxS). Our data advance our mechanistic understanding of renal clearance of PFAS in humans, provide useful input parameters for toxicokinetic models, and have broad implications for toxicological evaluation and regulatory considerations

    Efficient and Flexible Discovery of PHP Application Vulnerabilities

    Get PDF
    The Web today is a growing universe of pages and applications teeming with interactive content. The security of such applications is of the utmost importance, as exploits can have a devastating impact on personal and economic levels. The number one programming language in Web applications is PHP, powering more than 80% of the top ten million websites. Yet it was not designed with security in mind, and, today, bears a patchwork of fixes and inconsistently designed functions with often unexpected and hardly predictable behavior that typically yield a large attack surface. Consequently, it is prone to different types of vulnerabilities, such as SQL Injection or Cross-Site Scripting. In this paper, we present an interprocedural analysis technique for PHP applications based on code property graphs that scales well to large amounts of code and is highly adaptable in its nature. We implement our prototype using the latest features of PHP 7, leverage an efficient graph database to store code property graphs for PHP, and subsequently identify different types of Web application vulnerabilities by means of programmable graph traversals. We show the efficacy and the scalability of our approach by reporting on an analysis of 1,854 popular open-source projects, comprising almost 80 million lines of code

    Generation of Vascular Endothelial Cells and Hematopoietic Cells by Blastocyst Complementation.

    Get PDF
    In the case of organ transplantation accompanied by vascular anastomosis, major histocompatibility complex mismatched vascular endothelial cells become a target for graft rejection. Production of a rejection-free, transplantable organ, therefore, requires simultaneous generation of vascular endothelial cells within the organ. To generate pluripotent stem cell (PSC)-derived vascular endothelial cells, we performed blastocyst complementation with a vascular endothelial growth factor receptor-2 homozygous mutant blastocyst. This mutation is embryonic lethal at embryonic (E) day 8.5-9.5 due to an early defect in endothelial and hematopoietic cells. The Flk-1 homozygous knockout chimeric mice survived to adulthood for over 1 year without any abnormality, and all vascular endothelial cells and hematopoietic cells were derived from the injected PSCs. This approach could be used in conjunction with other gene knockouts which induce organ deficiency to produce a rejection-free, transplantable organ in which all the organ's cells and vasculature are PSC derived
    • …
    corecore