2 research outputs found

    Identification of amino acid residues of mammalian mitochondrial phosphate carrier important for its functional expression in yeast cells, as achieved by PCR-mediated random mutation and gap-repair cloning

    Get PDF
    The mitochondrial phosphate carrier (PiC) of mammals, but not the yeast one, is synthesized with a presequence. The deletion of this presequence of the mammalian PiC was reported to facilitate the import of the carrier into yeast mitochondria, but the question as to whether or not mammalian PiC could be functionally expressed in yeast mitochondria was not addressed. In the present study, we first examined whether the defective growth on a glycerol plate of yeast cells lacking the yeast PiC gene could be reversed by the introduction of expression vectors of rat PiCs. The introduction of expression vectors encoding full-length rat PiC (rPiC) or rPiC lacking the presequence (ΔNrPiC) was ineffective in restoring growth on the glycerol plates. When we examined the expression levels of individual rPiCs in yeast mitochondria, ΔNrPiC was expressed at a level similar to that of yeast PiC, but that of rPiC was very low. These results indicated that ΔNrPiC expressed in yeast mitochondria is inert. Next, we sought to isolate “revertants” viable on the glycerol plate by expressing randomly mutated ΔNrPiC, and obtained two clones. These clones carried either of two mutations, F267S or F282S; and these mutations restored the transport function of ΔNrPiC in yeast mitochondria. These two Phe residues were conserved in human carrier (hPiC), and the transport function of ΔNhPiC expressed in yeast mitochondria was also markedly improved by their substitutions. Thus, substitution of F267S or F282S was concluded to be important for functional expression of mammalian PiCs in yeast mitochondria

    Effects of employment of distinct strategies to capture antibody on antibody delivery into cultured cells

    Get PDF
    The characteristics of antibody delivery into cultured HeLa cells were examined by using two delivery systems. Both systems used a cell-penetrating peptide as a tool for intrusion of an antibody into the cells, but either a “protein A derivative” or “hydrophobic motif” was employed to capture the antibody. When we examined the uptake of the Alexa Fluor-labeled antibody by use of these two systems, both systems were found to effectively deliver the antibody into the cultured cells. However, when we compared the amount of antibody delivered by these systems with the amount of transferrin uptake, the former was 10 times smaller than the latter. The lower efficiency of antibody delivery than transferrin uptake seemed to be attributable to the involvement of the antibody delivery reagent, which failed to catch the antibody molecule. This interpretation was validated by an experiment using a larger amount of antibody, and the amount of antibody delivered by the “protein A derivative” system under this condition was determined to be 13 ng proteins/105 cells. The antibody delivery achieved by the “protein A derivative” or “hydrophobic motif” showed two differences, i.e., a difference in intracellular distribution of the delivered antibody molecules and a difference in the fluorescence spectrum observed with cellular lysates. Possible reasons for these differences between the two delivery systems are discussed
    corecore