3 research outputs found

    The effects of Zn Impurity on the Properties of Doped Cuprates in the Normal State

    Full text link
    We study the interplay of quantum impurity, and collective spinon and holon dynamics in Zn doped high-Tc_c cuprates in the normal state. The two-dimensional t-t′^{\prime}-J models with one and a small amount of Zn impurity are investigated within a numerical method based on the double-time Green function theory. We study the inhomogeneities of holon density and antiferromagnetic correlation background in cases with different Zn concentrations, and obtain that doped holes tend to assemble around the Zn impurity with their mobility being reduced. Therefore a bound state of holon is formed around the nonmagnetic Zn impurity with the effect helping Zn to introduce local antiferromagnetism around itself. The incommensurate peaks we obtained in the spin structure factor indicate that Zn impurities have effects on mixing the q=(π\pi, π\pi) and q=0 components in spin excitations.Comment: 5 pages, 3 figure

    Linkage Map of Escherichia coli

    No full text
    corecore