661 research outputs found

    Photoemission and x-ray absorption studies of valence states in (Ni,Zn,Fe,Ti)3_{3}O4_{4} thin films exhibiting photo-induced magnetization

    Full text link
    By means of photoemission and x-ray absorption spectroscopy, we have studied the electronic structure of (Ni,Zn,Fe,Ti)3_{3}O4_{4} thin films, which exhibits a cluster glass behavior with a spin-freezing temperature TfT_f of 230\sim 230 K and photo-induced magnetization (PIM) below TfT_f. The Ni and Zn ions were found to be in the divalent states. Most of the Fe and Ti ions in the thin films were trivalent (Fe3+^{3+}) and tetravalent (Ti4+^{4+}), respectively. While Ti doping did not affect the valence states of the Ni and Zn ions, a small amount of Fe2+^{2+} ions increased with Ti concentration, consistent with the proposed charge-transfer mechanism of PIM.Comment: 4 pages, 4 figure

    Pressure dependence of the magnetization in the ferromagnetic superconductor UGe_2

    Full text link
    The recent discovery that superconductivity occurs in several clean itinerant ferromagnets close to low temperature magnetic instabilities naturally invites an interpretation based on a proximity to quantum criticality. Here we report measurements of the pressure dependence of the low temperature magnetisation in one of these materials, UGe_2. Our results show that both of the magnetic transitions observed in this material as a function of pressure are first order transitions and do not therefore correspond to quantum critical points. Further we find that the known pressure dependence of the superconducting transition is not reflected in the pressure dependence of the static susceptibility. This demonstrates that the spectrum of excitations giving superconductivity is not that normally associated with a proximity to quantum criticality in weak itinerant ferromagnets. In contrast our data suggest that instead the pairing spectrum might be related to a sharp spike in the electronic density of states that also drives one of the magnetic transitions.Comment: to appear in Phys. Rev. Let

    Electronic structure and magnetism of the diluted magnetic semiconductor Fe-doped ZnO nano-particles

    Full text link
    We have studied the electronic structure of Zn0.9_{0.9}Fe0.1_{0.1}O nano-particles, which have been reported to show ferromagnetism at room temperature, by x-ray photoemission spectroscopy (XPS), resonant photoemission spectroscopy (RPES), x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD). From the experimental and cluster-model calculation results, we find that Fe atoms are predominantly in the Fe3+^{3+} ionic state with mixture of a small amount of Fe2+^{2+} and that Fe3+^{3+} ions are dominant in the surface region of the nano-particles. It is shown that the room temperature ferromagnetism in the Zn0.9_{0.9}Fe0.1_{0.1}O nano-particles is primarily originated from the antiferromagnetic coupling between unequal amounts of Fe3+^{3+} ions occupying two sets of nonequivalent positions in the region of the XMCD probing depth of \sim 2-3 nm.Comment: Single column, 12 pages, 8 figures, 1 tabl

    Effects of Uniaxial Stress on Antiferromagnetic Moment in the Heavy Electron Compound URu_2Si_2

    Full text link
    We have performed the elastic neutron scattering experiments under uniaxial stress \sigma along the tetragonal [100], [110] and [001] directions for URu2Si2. For \sigma // [100] and [110], the antiferromagnetic moment \mu_o is strongly enhanced from 0.02 \mu_B (\sigma=0) to 0.22 \mu_B (\sigma=2.5 kbar) at 1.5 K. The rate of increase d\mu_o/d\sigma is roughly estimated to be ~ 0.1 \mu_B/kbar, which is much larger than that for the hydrostatic pressure (~ 0.025 \mu_B/kbar). Above 2.5 kbar, \mu_o shows a tendency to saturate similar to the behavior in the hydrostatic pressure. For \sigma // [001], on the other hand, \mu_o shows only a slight increase to 0.028 \mu_B (\sigma = 4.6 kbar) with a rate of ~ 0.002 \mu_B/kbar. The observed anisotropy suggests that the competition between the hidden order and the antiferromagnetic state in URu2Si2 is strongly coupled with the tetragonal four-fold symmetry and the c/a ratio, or both.Comment: 3 pages, 3 eps figures, Proceedings of Int. Conf. on Strongly Correlated Electrons with Orbital Degrees of Freedom (Sendai, Japan, September 11-14, 2001

    Field Reentrance of the Hidden Order State of URu2Si2 under Pressure

    Full text link
    Combination of neutron scattering and thermal expansion measurements under pressure shows that the so-called hidden order phase of URu2Si2 reenters in magnetic field when antiferromagnetism (AF) collapses at H_AF (T). Macroscopic pressure studies of the HO-AF boundaries were realized at different pressures via thermal expansion measurements under magnetic field using a strain gauge. Microscopic proof at a given pressure is the reappearance of the resonance at Q_0=(1,0,0) under field which is correlated with the collapse of the AF Bragg reflections at Q_0.Comment: 5 pages, 6 figures, accepted for publication in J. Phys. Soc. Jp

    Widely Tunable Berry curvature in the Magnetic Semimetal Cr1+dTe2

    Full text link
    Magnetic semimetals have increasingly emerged as lucrative platforms hosting spin-based topological phenomena in real and momentum spaces. Of particular interest is the emergence of Berry curvature, whose geometric origin, accessibility from Hall transport experiments, and material tunability, bodes well for new physics and practical devices. Cr1+dTe2, a self-intercalated magnetic transition metal dichalcogenide, TMD, exhibits attractive natural attributes relevant to such applications, including topological magnetism, tunable electron filling, magnetic frustration etc. While recent studies have explored real-space Berry curvature effects in this material, similar considerations of momentum-space Berry curvature are lacking. Here, we systematically investigate the electronic structure and transport properties of epitaxial Cr1+dTe2 thin films over a wide range of doping, d between 0.33 and 0.71. Spectroscopic experiments reveal the presence of a characteristic semi-metallic band region near the Brillouin Zone edge, which shows a rigid band like energy shift as a function of d. Transport experiments show that the intrinsic component of the anomalous Hall effect, AHE, is sizable, and undergoes a sign flip across d. Finally, density functional theory calculations establish a causal link between the observed doping evolution of the band structure and AHE: the AHE sign flip is shown to emerge from the sign change of the Berry curvature, as the semi-metallic band region crosses the Fermi energy. Our findings underscore the increasing relevance of momentum-space Berry curvature in magnetic TMDs and provide a unique platform for intertwining topological physics in real and momentum spaces

    Split transition in ferromagnetic superconductors

    Full text link
    The split superconducting transition of up-spin and down-spin electrons on the background of ferromagnetism is studied within the framework of a recent model that describes the coexistence of ferromagnetism and superconductivity induced by magnetic fluctuations. It is shown that one generically expects the two transitions to be close to one another. This conclusion is discussed in relation to experimental results on URhGe. It is also shown that the magnetic Goldstone modes acquire an interesting structure in the superconducting phase, which can be used as an experimental tool to probe the origin of the superconductivity.Comment: REVTeX4, 15 pp, 7 eps fig

    Band-theoretical prediction of magnetic anisotropy in uranium monochalcogenides

    Full text link
    Magnetic anisotropy of uranium monochalcogenides, US, USe and UTe, is studied by means of fully-relativistic spin-polarized band structure calculations within the local spin-density approximation. It is found that the size of the magnetic anisotropy is fairly large (about 10 meV/unit formula), which is comparable with experiment. This strong anisotropy is discussed in view of a pseudo-gap formation, of which crucial ingredients are the exchange splitting of U 5f states and their hybridization with chalcogen p states (f-p hybridization). An anomalous trend in the anisotropy is found in the series (US>>USe<UTe) and interpreted in terms of competition between localization of the U 5f states and the f-p hybridization. It is the spin-orbit interaction on the chalcogen p states that plays an essential role in enlarging the strength of the f-p hybridization in UTe, leading to an anomalous systematic trend in the magnetic anisotropy.Comment: 4 pages, 5 figure
    corecore