33,831 research outputs found

    Initial Shock Waves for Explosive Nucleosynthesis in Type II Supernova

    Get PDF
    We have performed 1-dimensional calculations for explosive nucleosynthesis in collapse-driven supernova and investigated its sensitivity to the initial form of the shock wave. We have found the tendency that the peak temperature becomes higher around the mass cut if the input energy is injected more in the form of kinetic energy rather than internal energy. Then, the mass cut becomes larger, and, as a result, neutron-rich matter is less included in the ejecta; this is favorable for producing the observational data compared with a previous model. Our results imply that the standard method to treat various processes for stellar evolution, such as convection and electron capture during the silicon burning stage, are still compatible with the calculation of explosive nucleosynthesis.Comment: 20 pages, 6 figures, LaTe

    Stripe Formation in Fermionic Atoms on 2-D Optical Lattice inside a Box Trap: DMRG Studies for Repulsive Hubbard Model with Open Boundary Condition

    Full text link
    We suggest that box shape trap enables to observe intrinsic properties of the repulsive Hubbard model in a fixed doping in contrast to the harmonic trap bringing about spatial variations of atom density profiles. In order to predict atomic density profile under the box trap, we apply the directly-extended density-matrix renormalization group method to 4-leg repulsive Hubbard model with the open boundary condition. Consequently, we find that stripe formation is universal in a low hole doping range and the stripe sensitively changes its structure with variations of U/tU/t and the doping rate. A remarkable change is that a stripe formed by a hole pair turns to one by a bi-hole pair when entering a limited strong U/tU/t range. Furthermore, a systematic calculation reveals that the Hubbard model shows a change from the stripe to the Friedel like oscillation with increasing the doping rate

    Experimental determination of optimum coil pitch for a planar mesh-type micromagnetic sensor

    Get PDF
    To overcome the directional properties of a planar meander-type sensor, a new planar micromagetic sensor having mesh-type configuration is reported in this paper. Analytical models are usually used for the characterization of the planar-type sensors. Sensors having mesh-type configuration have been fabricated for the derivation of the optimum coil pitch

    R-Process Nucleosynthesis In Neutrino-Driven Winds From A Typical Neutron Star With M = 1.4 Msun

    Full text link
    We study the effects of the outer boundary conditions in neutrino-driven winds on the r-process nucleosynthesis. We perform numerical simulations of hydrodynamics of neutrino-driven winds and nuclear reaction network calculations of the r-process. As an outer boundary condition of hydrodynamic calculations, we set a pressure upon the outermost layer of the wind, which is approaching toward the shock wall. Varying the boundary pressure, we obtain various asymptotic thermal temperature of expanding material in the neutrino-driven winds for resulting nucleosynthesis. We find that the asymptotic temperature slightly lower than those used in the previous studies of the neutrino-driven winds can lead to a successful r-process abundance pattern, which is in a reasonable agreement with the solar system r-process abundance pattern even for the typical proto-neutron star mass Mns ~ 1.4 Msun. A slightly lower asymptotic temperature reduces the charged particle reaction rates and the resulting amount of seed elements and lead to a high neutron-to-seed ratio for successful r-process. This is a new idea which is different from the previous models of neutrino-driven winds from very massive (Mns ~ 2.0 Msun) and compact (Rns ~ 10 km) neutron star to get a short expansion time and a high entropy for a successful r-process abundance pattern. Although such a large mass is sometimes criticized from observational facts on a neutron star mass, we dissolve this criticism by reconsidering the boundary condition of the wind. We also explore the relation between the boundary condition and neutron star mass, which is related to the progenitor mass, for successful r-process.Comment: 14 pages, 2 figure

    Universal Finite-Size Scaling Function of the Ferromagnetic Heisenberg Chain in a Magnetic Field,

    Full text link
    The finite-size scaling function of the magnetization of the ferromagnetic Heisenberg chain is argued to be universal with respect to the magnitude of the spin. The finite-size scaling function is given explicitly by an analytical calculation in the classical limit S=∞.S=\infty. The universality is checked for S=1/2S=1/2 and 11 by means of numerical calculations. Critical exponents are obtained as well. It is concluded that this universal scaling function originates in the universal behavior of the correlation function.Comment: 14 pages (revtex 2.0) + 8 PS figures upon request

    Hydrodynamics of Internal Shocks in Relativistic Outflows

    Full text link
    We study the hydrodynamical effects of two colliding shells, adopted to model internal shocks in various relativistic outflows such as gamma-ray bursts and blazars. We find that the density profiles are significantly affected by the propagation of rarefaction waves. A split-feature appears at the contact discontinuity of the two shells. The shell spreading with a few ten percent of the speed of light is also shown to be a notable aspect. The conversion efficiency of the bulk kinetic energy to internal one shows deviations from the widely-used inelastic two-point-mass-collision model. Observational implications are also shortly discussed.Comment: 6 pages, 4 figures, Proceeding of International Symposium on High Energy Gamma-ray Astronomy (July 26-30, 2004, Heidelberg, Germany
    • 

    corecore