228 research outputs found
Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts.
Organelle contact sites perform fundamental functions in cells, including lipid and ion homeostasis, membrane dynamics, and signaling. Using a forward proteomics approach in yeast, we identified new ER-mitochondria and ER-vacuole contacts specified by an uncharacterized protein, Ylr072w. Ylr072w is a conserved protein with GRAM and VASt domains that selectively transports sterols and is thus termed Ltc1, for Lipid transfer at contact site 1. Ltc1 localized to ER-mitochondria and ER-vacuole contacts via the mitochondrial import receptors Tom70/71 and the vacuolar protein Vac8, respectively. At mitochondria, Ltc1 was required for cell viability in the absence of Mdm34, a subunit of the ER-mitochondria encounter structure. At vacuoles, Ltc1 was required for sterol-enriched membrane domain formation in response to stress. Increasing the proportion of Ltc1 at vacuoles was sufficient to induce sterol-enriched vacuolar domains without stress. Thus, our data support a model in which Ltc1 is a sterol-dependent regulator of organelle and cellular homeostasis via its dual localization to ER-mitochondria and ER-vacuole contact sites
Recommended from our members
Sterol transporters at membrane contact sites regulate TORC1 and TORC2 signaling.
Membrane contact sites (MCSs) function to facilitate the formation of membrane domains composed of specialized lipids, proteins, and nucleic acids. In cells, membrane domains regulate membrane dynamics and biochemical and signaling pathways. We and others identified a highly conserved family of sterol transport proteins (Ltc/Lam) localized at diverse MCSs. In this study, we describe data indicating that the yeast family members Ltc1 and Ltc3/4 function at the vacuole and plasma membrane, respectively, to create membrane domains that partition upstream regulators of the TORC1 and TORC2 signaling pathways to coordinate cellular stress responses with sterol homeostasis
A new improved optimization of perturbation theory: applications to the oscillator energy levels and Bose-Einstein critical temperature
Improving perturbation theory via a variational optimization has generally
produced in higher orders an embarrassingly large set of solutions, most of
them unphysical (complex). We introduce an extension of the optimized
perturbation method which leads to a drastic reduction of the number of
acceptable solutions. The properties of this new method are studied and it is
then applied to the calculation of relevant quantities in different
models, such as the anharmonic oscillator energy levels and the critical
Bose-Einstein Condensation temperature shift recently investigated
by various authors. Our present estimates of , incorporating the
most recently available six and seven loop perturbative information, are in
excellent agreement with all the available lattice numerical simulations. This
represents a very substantial improvement over previous treatments.Comment: 9 pages, no figures. v2: minor wording changes in title/abstract, to
appear in Phys.Rev.
Diffusion of Macromolecules across the Nuclear Pore Complex
Nuclear pore complexes (NPCs) are very selective filters that monitor the
transport between the cytoplasm and the nucleoplasm. Two models have been
suggested for the plug of the NPC. They are (i) it is a reversible hydrogel or
(ii) it is a polymer brush. We propose a mesoscopic model for the transport of
a protein through the plug, that is general enough to cover both. The protein
stretches the plug and creates a local deformation. The bubble so created
(prtoein+deformation) executes random walk in the plug. We find that for faster
relaxation of the gel, the diffusion of the bubble is greater. Further, on
using parameters appropriate for the brush, we find that the diffusion
coefficient is much lower. Hence the gel model seems to be more likely
explanation for the workings of the plug
Genetic variation in \u3ci\u3eMiscanthus\u3c/i\u3e X \u3ci\u3egiganteus\u3c/i\u3e and the importance of estimating genetic distance thresholds for differentiating clones
Miscanthus x giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine if the Mxg cultivars in North America were all synonyms, and if they were derived from the European introduction. We used 64 nuclear and five chloroplast simple sequence repeat (SSR) markers to estimate genetic similarity for 27 Mxg accessions from North America, and compared them with six accessions from Europe, including the species’ type-specimen. A subset of accessions was also evaluated by restriction-site associated DNA sequencing (RAD-seq). In addition, we assessed the potential of new crosses to increase Mxg genetic diversity by comparing eight new triploid Mxg progeny grown from seed, along with samples of the parental species M. sacchariflorus and M. sinensis. Estimates of genotyping error rates were essential for distinguishing between experimental error and true genotypic differences among accessions. Given differences in estimated error rates and costs per marker for SSRs and RAD-seq, the former is currently more cost-effective for determining if two accessions are genetically identical. We concluded that all of the Mxg legacy cultivars were derived via vegetative propagation from a single genet. In contrast with the Mxg legacy cultivars, genetic similarity to the type-specimen of eight new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much-needed variation to growers
Self generated randomness, defect wandering and viscous flow in stripe glasses
We show that the competition between interactions on different length scales,
as relevant for the formation of stripes in doped Mott insulators, can cause a
glass transition in a system with no explicitly quenched disorder. We
analytically determine a universal criterion for the emergence of an
exponentially large number of metastable configurations that leads to a finite
configurational entropy and a landscape dominated viscous flow. We demonstrate
that glassines is unambiguously tied to a new length scale which characterizes
the typical length over which defects and imperfections in the stripe pattern
are allowed to wander over long times.Comment: 17 pages, 9 figure
Venture funding for science-based African health innovation
<p>Abstract</p> <p>Background</p> <p>While venture funding has been applied to biotechnology and health in high-income countries, it is still nascent in these fields in developing countries, and particularly in Africa. Yet the need for implementing innovative solutions to health challenges is greatest in Africa, with its enormous burden of communicable disease. Issues such as risk, investment opportunities, return on investment requirements, and quantifying health impact are critical in assessing venture capital’s potential for supporting health innovation. This paper uses lessons learned from five venture capital firms from Kenya, South Africa, China, India, and the US to suggest design principles for African health venture funds.</p> <p>Discussion</p> <p>The case study method was used to explore relevant funds, and lessons for the African context. The health venture funds in this study included publicly-owned organizations, corporations, social enterprises, and subsidiaries of foreign venture firms. The size and type of investments varied widely. The primary investor in four funds was the International Finance Corporation. Three of the funds aimed primarily for financial returns, one aimed primarily for social and health returns, and one had mixed aims. Lessons learned include the importance of measuring and supporting both social and financial returns; the need to engage both upstream capital such as government risk-funding and downstream capital from the private sector; and the existence of many challenges including difficulty of raising capital, low human resource capacity, regulatory barriers, and risky business environments. Based on these lessons, design principles for appropriate venture funding are suggested.</p> <p>Summary</p> <p>Based on the cases studied and relevant experiences elsewhere, there is a case for venture funding as one support mechanism for science-based African health innovation, with opportunities for risk-tolerant investors to make financial as well as social returns. Such funds should be structured to overcome the challenges identified, be sustainable in the long run, attract for-profit private sector funds, and have measurable and significant health impact. If this is done, the proposed venture approach may have complementary benefits to existing initiatives and encourage local scientific and economic development while tapping new sources of funding.</p
Characters for from a novel Thermodynamic Bethe Ansatz
Motivated by the recent development on the exact thermodynamics of 1D quantum
systems, we propose quasi-particle like formulas for
characters. The
case is re-examined first. The novel formulation yields a direct connection to
the fractional statistics in the short range interacting model, and provides a
clear description of the spinon character formula. Generalizing the
observation, we find formulas for , which can be
proved by the Durfee rectangle formula.Comment: 13 pages, Latex 2
- …