137 research outputs found
Learning and Transferring IDs Representation in E-commerce
Many machine intelligence techniques are developed in E-commerce and one of
the most essential components is the representation of IDs, including user ID,
item ID, product ID, store ID, brand ID, category ID etc. The classical
encoding based methods (like one-hot encoding) are inefficient in that it
suffers sparsity problems due to its high dimension, and it cannot reflect the
relationships among IDs, either homogeneous or heterogeneous ones. In this
paper, we propose an embedding based framework to learn and transfer the
representation of IDs. As the implicit feedbacks of users, a tremendous amount
of item ID sequences can be easily collected from the interactive sessions. By
jointly using these informative sequences and the structural connections among
IDs, all types of IDs can be embedded into one low-dimensional semantic space.
Subsequently, the learned representations are utilized and transferred in four
scenarios: (i) measuring the similarity between items, (ii) transferring from
seen items to unseen items, (iii) transferring across different domains, (iv)
transferring across different tasks. We deploy and evaluate the proposed
approach in Hema App and the results validate its effectiveness.Comment: KDD'18, 9 page
- …