51 research outputs found
A rapid quality control test to foster the development of genetic control in mosquitoes.
Vector-borne diseases are responsible for more than one million deaths per year. Alternative methods of mosquito control to insecticides such as genetic control techniques are thus urgently needed. In genetic techniques involving the release of sterile insects, it is critical to release insects of high quality. Sterile males must be able to disperse, survive and compete with wild males in order to inseminate wild females. There is currently no standardized, fast-processing method to assess mosquito male quality. Since male competitiveness is linked to their ability to fly, we developed a flight test device that aimed to measure the quality of sterile male mosquitoes via their capacity to escape a series of flight tubes within two hours and compared it to two other reference methods (survival rate and mating propensity). This comparison was achieved in three different stress treatment settings usually encountered when applying the sterile insect technique, i.e. irradiation, chilling and compaction. In all treatments, survival and insemination rates could be predicted by the results of a flight test, with over 80% of the inertia predicted. This novel tool could become a standardised quality control method to evaluate cumulative stress throughout the processes related to genetic control of mosquitoes
Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin
BACKGROUND: The sterile insect technique (SIT) has been used with success for suppressing or eliminating important insect pests of agricultural or veterinary importance. In order to develop SIT for mosquitoes, female elimination prior to release is essential as they are the disease-transmitting sex. A genetic sexing strain (GSS) of Anopheles arabiensis was created based on resistance to dieldrin, and methods of sex separation at the egg stage were developed. The use of this strain for SIT will require sexually sterile males: useful radiation doses for this purpose were determined for pupae and adults. METHODS: For the creation of the sexing strain, dieldrin-resistant males were irradiated with 40 Gy using a (60)Co source and were subsequently crossed to homozygous susceptible virgin females. Individual families were screened for semi-sterility and for male resistance to dieldrin. For sex separation, eggs of a resulting GSS, ANO IPCL1, were exposed to varying concentrations of dieldrin for different durations. Percent hatch, larval survival, and male and female emergence were recorded. Radiation induced sterility was determined following adult and pupa exposure to gamma rays at 0–105 Gy. Mortality induced by dieldrin treatment, and levels of sterility post radiation were investigated. RESULTS: ANO IPCL1 contains a complex chromosome aberration that pseudo-links the male-determining Y chromosome and dieldrin resistance, conferring high natural semi-sterility. Exposure of eggs to 2, 3, and 4 ppm dieldrin solutions resulted in complete female elimination without a significant decrease of male emergence compared to the controls. A dose of 75 Gy reduced the fertility to 3.8 and 6.9% when males were irradiated as pupae or adults respectively, but the proportions of progeny of these males reaching adulthood were 0.6 and 1.5% respectively CONCLUSION: The GSS ANO IPCL1 was shown to be a suitable strain for further testing for SIT though high semi-sterility is a disadvantage for mass rearing
High sensitivity of one-step real-time reverse transcription quantitative PCR to detect low virus titers in large mosquito pools
Background: Mosquitoes are the deadliest animals in the world. Their ability to carry and spread diseases to humans causes millions of deaths every year. Due to the lack of efficient vaccines, the control of mosquito-borne diseases primarily relies on the management of the vector. Traditional control methods are insufficient to control mosquito populations. The sterile insect technique (SIT) is an additional control method that can be combined with other control tactics to suppress specific mosquito populations. The SIT requires the mass-rearing and release of sterile males with the aim to induce sterility in the wild female population. Samples collected from the environment for laboratory colonization, as well as the released males, should be free from mosquito-borne viruses (MBV). Therefore, efficient detection methods with defined detection limits for MBV are required. Although a one-step reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) method was developed to detect arboviruses in human and mosquito samples, its detection limit in mosquito samples has yet to be defined.
Methods: We evaluated the detection sensitivity of one step RT-qPCR for targeted arboviruses in large mosquito pools, using pools of non-infected mosquitoes of various sizes (165, 320 and 1600 mosquitoes) containing one infected mosquito body with defined virus titers of chikungunya virus (CHIKV), usutu virus (USUV), West Nile virus (WNV) and Zika virus (ZIKV).
Results: CHIK, USUV, ZIKV, and WNV virus were detected in all tested pools using the RT-qPCR assay. Moreover, in the largest mosquito pools (1600 mosquitoes), RT-qPCR was able to detect the targeted viruses using different total RNA quantities (10, 1 and 0.1 ng per reaction) as a template. Correlating the virus titer with the total RNA quantity allowed the prediction of the maximum number of mosquitoes per pool in which the RT-qPCR can theoretically detect the virus infection.
Conclusions: Mosquito-borne viruses can be reliably detected by RT-qPCR assay in pools of mosquitoes exceeding 1000 specimens. This will represent an important step to expand pathogen-free colonies for mass-rearing sterile males for programmes that have a SIT component by reducing the time and the manpower needed to conduct this quality control process.
Keywords: Arbovirus; Chikungunya virus (CHIKV); Flavivirus; Pool size; RT-qPCR; Usutu virus (USUV); West Nile virus (WNV); Zika virus (ZIKV).info:eu-repo/semantics/publishedVersio
Evaluation of radiation sensitivity and mating performance of Glossina brevipalpis males
BACKGROUND : Area-wide integrated pest management strategies that include a sterile insect technique
component have been successfully used to eradicate tsetse fly populations in the past. To
ensure the success of the sterile insect technique, the released males must be adequately
sterile and be able to compete with their native counterparts in the wild.
METHODOLOGY/PRINCIPAL FINDINGS : In the present study the radiation sensitivity of colonised Glossina brevipalpis Newstead
(Diptera; Glossinidae) males, treated either as adults or pupae, was assessed. The mating
performance of the irradiated G. brevipalpis males was assessed in walk-in field cages.
Glossina brevipalpis adults and pupae were highly sensitive to irradiation, and a dose of 40
Gy and 80 Gy induced 93% and 99% sterility respectively in untreated females that mated
with males irradiated as adults. When 37 to 41 day old pupae were exposed to a dose of 40
Gy, more than 97% sterility was induced in untreated females that mated with males derived
from irradiated pupae. Males treated as adults with a dose up to 80 Gy were able to compete
successfully with untreated fertile males for untreated females in walk-in field cages.
CONCLUSIONS/SIGNIFICANCE : The data emanating from this field cage study indicates that, sterile male flies derived from
the colony of G. brevipalpis maintained at the Agricultural Research Council-Onderstepoort
Veterinary Institute in South Africa are potential good candidates for a campaign that includes a sterile insect technique component. This would need to be confirmed by open
field studies.The Research was done in collaboration
with the Joint Food and Agriculture Organization/
International Atomic Energy Agency Division of
Nuclear Techniques in Food and Agriculture under
the coordinated research project 17753/R0.http://www.plosntds.orgam2017Veterinary Tropical Disease
Standardization of the FAO/IAEA Flight Test for Quality Control of Sterile Mosquitoes
[EN] Successful implementation of the sterile insect technique (SIT) against Aedes aegypti and Aedes albopictus relies on maintaining a consistent release of high-quality sterile males. Affordable, rapid, practical quality control tools based on the male's flight ability (ability to escape from a flight device) may contribute to meeting this requirement. Therefore, this study aims to standardize the use of the original FAO/IAEA rapid quality control flight test device (FTD) (version 1.0), while improving handling conditions and reducing the device's overall cost by assessing factors that could impact the subsequent flight ability of Aedes mosquitoes. The new FTD (version 1.1) is easier to use. The most important factors affecting escape rates were found to be tube color (or "shade"), the combined use of a lure and fan, mosquito species, and mosquito age and density (25; 50; 75; 100 males). Other factors measured but found to be less important were the duration of the test (30, 60, 90, 120 min), fan speed (normal 3000 rpm vs. high 6000 rpm), and mosquito strain origin. In addition, a cheaper version of the FTD (version 2.0) that holds eight individual tubes instead of 40 was designed and successfully validated against the new FTD (version 1.1). It was sensitive enough to distinguish between the effects of cold stress and high irradiation dose. Therefore, the eight-tube FTD may be used to assess Aedes' flight ability. This study demonstrated that the new designs (versions 1.1 and 2.0) of the FTD could be used for standard routine quality assessments of Aedes mosquitoes required for an SIT and other male release-based programs.The authors are grateful to Empresa de Transformación Agraria S.A., S.M.E, M.P. (TRAGSA), Spain, and to Wolbaki, China, for donating their strain for testing. They are grateful to the two reviewers for their useful comments/suggestions that improved our manuscript.
This research was funded by the United States of America under the grant to the IAEA entitled ¿Surge expansion for the sterile insect technique to control mosquito populations that transmit the Zika virus.¿ The funders and the agency had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.Maïga, H.; Lu, D.; Mamai, W.; Somda, NSB.; Wallner, T.; Bakhoum, MT.; Masso, OB.... (2022). Standardization of the FAO/IAEA Flight Test for Quality Control of Sterile Mosquitoes. Frontiers in Bioengineering and Biotechnology. 10:1-14. https://doi.org/10.3389/fbioe.2022.8766751141
Phased Conditional Approach for Mosquito Management Using Sterile Insect Technique
International audienceMosquito-borne diseases represent a major threat to humankind. Recently, the incidence of malaria has stopped decreasing while that of dengue is increasing exponentially. Alternative mosquito-control methods are urgently needed. The sterile insect technique (SIT) has seen significant developments recently and may play an important role. However, testing and implementing SIT for vector control is challenging, and a phased conditional approach (PCA) is recommended, that is, advancement to the next phase depends on completion of activities in the previous one. We herewith present a PCA to test the SIT against mosquitoes within an area-wide-integrated pest-management programme, taking into account the experience gained with plant and livestock pests and the recent developments of the technique against mosquitoes
Demonstration of resistance to satyrization behavior in Aedes aegypti from La Réunion island
Aedes aegypti and Aedes albopictus are competent vectors of arboviruses such as dengue and chikungunya viruses which co-exist in some areas including La Réunion island. A kind of reproductive interference called satyrization has been described in sympatric species where a dominant species tends to control the spread of the other species. Here, we investigated satyrization in laboratory experiments to provide insights on the potential impact on Ae. aegypti of a control campaign including a sterile insect technique component against Ae. albopictus. Different mating crosses were used to test sympatric, conspecific-interspecific and allopatric effects of irradiated and non-irradiated male Ae. albopictus on female Ae. aegypti, including in a situation of skewed male ratio. Our results suggest that there was only a low level of satyrization between sympatric populations of Ae. aegypti and Ae. albopictus colonised from La Réunion island. A male Ae. albopictus to female Ae. aegypti ratio of 3:1 did not increase the level of satyrization. Female Ae. aegypti previously mated to male Ae. albopictus were not prevented from being inseminated by conspecific male Ae. aegypti. A satyrization effect was not seen between allopatric Ae. albopictus and Ae. aegypti strains from La Réunion Island either. The tested Ae. aegypti strain from La Réunion island has therefore developed full resistance to satyrization and so releasing sterile male Ae. albopictus may not suppress Ae. aegypti populations if an overflooding of irradiated male Ae. albopictus leads to similar results. The management strategy of two competent species in a sympatric area is discussed
- …