237 research outputs found

    Stability analysis and observer design for one-sided Lipschitz descriptor systems with time-varying delay

    Get PDF
    This paper investigates the problem of stability analysis and observer design for nonlinear descriptor systems with time-varying delay. In the systems, the nonlinear function satisfies the one-sided Lipschitz condition and the quadratic internal boundary condition. The disturbance is considered in both the state and the output equation. Using one-sided Lipschitz condition, the quadratic internal boundary condition, and the generalized Lyapunov method, we establish the non-strict bilinear matrix inequality (BMI)-based condition. We change the condition into strict bilinear matrix inequality (BMI) condition. Furthermore, we give the linear matrix inequality-based condition to ensure the gradual convergence of state estimation error and to accomplish robustness against   L2  norm bounded disturbances by utilizing change of variables for straight forward computation of the observer gain matrix. Finally, a numerical example is given to verify the effectiveness of the observer design scheme

    NSUN2‐Mediated m5C Methylation and METTL3/METTL14‐Mediated m6A Methylation Cooperatively Enhance p21 Translation

    Full text link
    N6‐methyladenosine (m6A) and m5C methylation are two major types of RNA methylation, but the impact of joint modifications on the same mRNA is unknown. Here, we show that in p21 3′UTR, NSUN2 catalyzes m5C modification and METTL3/METTL14 catalyzes m6A modification. Interestingly, methylation at m6A by METTL3/METTL14 facilitates the methylation of m5C by NSUN2, and vice versa. NSUN2‐mediated m5C and METTL3/METTL14‐mediated m6A methylation synergistically enhance p21 expression at the translational level, leading to elevated expression of p21 in oxidative stress‐induced cellular senescence. Our findings on p21 mRNA methylation and expression reveal that joint m6A and m5C modification of the same RNA may influence each other, coordinately affecting protein expression patterns. J. Cell. Biochem. 118: 2587–2598, 2017. © 2017 Wiley Periodicals, Inc.In p21 3’UTR,NSUN2 catalyzes m5C modification and METTL3/METTL14 catalyzes m6A modification. Methylation at m6A by METTL3/METTL14 facilitates the methylation of m5C by NSUN2, and vice versa. NSUN2‐mediated m5C and METTL3/METTL14‐mediated m6A methylation synergistically enhance p21 expression at the translational level, leading to elevated expression of p21 in oxidative stress‐induced cellular senescence.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137760/1/jcb25957.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137760/2/jcb25957_am.pd

    PP-158 Development of HIV-1 laboratory diagnostic assay based on the multiplex PCR

    Get PDF

    Progressive Object Transfer Detection

    Full text link
    Recent development of object detection mainly depends on deep learning with large-scale benchmarks. However, collecting such fully-annotated data is often difficult or expensive for real-world applications, which restricts the power of deep neural networks in practice. Alternatively, humans can detect new objects with little annotation burden, since humans often use the prior knowledge to identify new objects with few elaborately-annotated examples, and subsequently generalize this capacity by exploiting objects from wild images. Inspired by this procedure of learning to detect, we propose a novel Progressive Object Transfer Detection (POTD) framework. Specifically, we make three main contributions in this paper. First, POTD can leverage various object supervision of different domains effectively into a progressive detection procedure. Via such human-like learning, one can boost a target detection task with few annotations. Second, POTD consists of two delicate transfer stages, i.e., Low-Shot Transfer Detection (LSTD), and Weakly-Supervised Transfer Detection (WSTD). In LSTD, we distill the implicit object knowledge of source detector to enhance target detector with few annotations. It can effectively warm up WSTD later on. In WSTD, we design a recurrent object labelling mechanism for learning to annotate weakly-labeled images. More importantly, we exploit the reliable object supervision from LSTD, which can further enhance the robustness of target detector in the WSTD stage. Finally, we perform extensive experiments on a number of challenging detection benchmarks with different settings. The results demonstrate that, our POTD outperforms the recent state-of-the-art approaches.Comment: TIP 201

    Constructing a dual-function surface by microcasting and nanospraying for efficient drag reduction and potential antifouling capabilities

    Get PDF
    To improve the drag-reducing and antifouling performance of marine equipment, it is indispensable to learn from structures and materials that are found in nature. This is due to their excellent properties, such as intelligence, microminiaturization, hierarchical assembly, and adaptability. Considerable interest has arisen in fabricating surfaces with various types of biomimetic structures, which exhibit promising and synergistic performances similar to living organisms. In this study, a dual bio-inspired shark-skin and lotus-structure (BSLS) surface was developed for fabrication on commercial polyurethane (PU) polymer. Firstly, the shark-skin pattern was transferred on the PU by microcasting. Secondly, hierarchical micro- and nanostructures were introduced by spraying mesoporous silica nanospheres (MSNs). The dual biomimetic substrates were characterized by scanning electron microscopy, water contact angle characterization, antifouling, self-cleaning, and water flow impacting experiments. The results revealed that the BSLS surface exhibited dual biomimetic features. The micro- and nano-lotus-like structures were localized on a replicated shark dermal denticle. A contact angle of 147° was observed on the dual-treated surface and the contact angle hysteresis was decreased by 20% compared with that of the nontreated surface. Fluid drag was determined with shear stress measurements and a drag reduction of 36.7% was found for the biomimetic surface. With continuous impacting of high-speed water for up to 10 h, the biomimetic surface stayed superhydrophobic. Material properties such as inhibition of protein adsorption, mechanical robustness, and self-cleaning performances were evaluated, and the data indicated these behaviors were significantly improved. The mechanisms of drag reduction and self-cleaning are discussed. Our results indicate that this method is a potential strategy for efficient drag reduction and antifouling capabilities

    Hypomethylation of the ENPP3 promoter region contributes to the occurrence and development of ovarian endometriosis via the AKT/mTOR/4EBP1 signaling pathway

    Get PDF
    Growing evidence indicates that aberrant methylation is pivotal in the development and progression of endometriosis (EMs). This study explores the relationship between abnormal methylation of the ENPP3 promoter and the pathogenesis of ovarian EMs, focusing on its regulatory effect on ENPP3 expression. We analyzed the methylation levels of ENPP3 in ectopic endometrial tissues from ovarian EMs patients and in normal endometrial tissues from women without EMs. The expression and distribution of ENPP3 were evaluated using RT-qPCR and immunohistochemistry. Transwell assays were conducted to examine the impact of ENPP3 overexpression on the migratory and invasive capabilities of endometrial stromal cells. Our results demonstrated significantly reduced methylation levels at the CpG sites of the ENPP3 promoter region in ectopic endometrial tissues compared to normal endometrial tissues. RT-qPCR findings revealed a marked increase in ENPP3 expression in ovarian EMs tissues relative to endometrial tissues from patients without EMs, and this upregulation was negatively correlated with the methylation levels of the ENPP3 promoter region. Immunohistochemical analyses confirmed elevated ENPP3 expression in the glandular epithelial cells and stroma of ovarian EMs tissues. Furthermore, in vitro experiments showed that overexpressed ENPP3 notably intensified the invasion and migration of endometrial stromal cells. Transcriptome sequencing and functional analyses indicated that the increased ENPP3 expression activated the AKT/mTOR/4EBP1 signaling pathway. In summary, the study suggests that hypomethylation in the ENPP3 promoter region may contribute to the initiation and advancement of ovarian EMs by activating the AKT/mTOR/4EBP1 pathway, supporting the theory that EMs might be an epigenetically regulated disorder

    Measuring dynamic changes in the spatial pattern and connectivity of surface waters based on landscape and graph metrics: A case study of henan province in central china

    Get PDF
    An understanding of the scientific layout of surface water space is crucial for the sustainable development of human society and the ecological environment. The objective of this study was to use land-use/land-cover data to identify the spatiotemporal dynamic change processes and the influencing factors over the past three decades in Henan Province, central China. Multidisciplinary theories (landscape ecology and graph theory) and methods (GIS spatial analysis and SPSS correlation analysis) were used to quantify the dynamic changes in surface water pattern and connectivity. Our results revealed that the water area decreased significantly during the periods of 1990–2000 and 2010–2018 due to a decrease in tidal flats and linear waters, but increased significantly in 2000–2010 due to an increase in patchy waters. Human construction activities, socioeconomic development and topography were the key factors driving the dynamics of water pattern and connectivity. The use of graph metrics (node degree, betweenness centrality, and delta probability of connectivity) in combination with landscape metrics (Euclidean nearest-neighbor distance) can help establish the parameters of threshold distance between connected habitats, identify hubs and stepping stones, and determine the relatively important water patches that require priority protection or development

    Effects of Deep Tillage and Straw Returning on Soil Microorganism and Enzyme Activities

    Get PDF
    Two field experiments were conducted for two years with the aim of studying the effects of deep tillage and straw returning on soil microorganism and enzyme activity in clay and loam soil. Three treatments, (1) conventional tillage (CT), shallow tillage and straw returning; (2) deep tillage (DT), deep tillage and straw returning; and (3) deep tillage with no straw returning (DNT), were carried out in clay and loam soil. The results showed that deep tillage and straw returning increased the abundance of soil microorganism and most enzyme activities. Deep tillage was more effective for increasing enzyme activities in clay, while straw returning was more effective in loam. Soil microorganism abundance and most enzyme activities decreased with the increase of soil depth. Deep tillage mainly affected soil enzyme activities in loam at the soil depth of 20–30 cm and in clay at the depth of 0–40 cm. Straw returning mainly affected soil microorganism and enzyme activities at the depths of 0–30 cm and 0–40 cm, respectively
    corecore