23 research outputs found

    Cation Ordering and Superstructures in Natural Layered Double Hydroxides

    Get PDF
    Layered double hydroxides (LDHs) constitute an important group of materials with many applications ranging from catalysis and absorption to carriers for drug delivery, DNA intercalation and carbon dioxide sequestration. The structures of LDHs are based upon double brucite-like hydroxide layers [M2+nM3+m(OH)2(m+n)]m+, where M2+ = Mg2+, Fe2+, Mn2+, Zn2+, etc.; M3+ = Al3+, Fe3+, Cr3+, Mn3+, etc. Structural features of LDHs such as cation ordering, charge distribution and polytypism have an immediate influence upon their properties. However, all the structural studies on synthetic LDHs deal with powder samples that prevent elucidation of such fine details of structure architecture as formation of superstructures due to cation ordering. In contrast to synthetic materials, natural LDHs are known to form single crystals accessible to single-crystal X-ray diffraction analysis, which provides a unique possibility to investigate 3D cation ordering in LDHs that results in formation of complex superstructures, where 2D cation order is combined with a specific order of layer stacking (polytypism). Therefore LDH minerals provide an indispensable source of structural information for modeling of structures and processes happening in LDHs at the molecular and nanoscale levels

    Crystal chemistry and nomenclature of the lovozerite group

    Get PDF
    Abstract: The paper summarizes crystal-chemical data and describes the IMA-accepted nomenclature of lovozerite-group minerals (LGM). The lovozerite group includes nine zeolite-like cyclosilicates with the general formula Their structures are based upon a heteropolyhedral framework consisting of rings of Si-centred tetrahedra and M-centred octahedra forming a 3D system of channels that host A, B, and C cations. The structures can be also considered as based upon pseudocubic modules centred at the midpoint of the Si tetrahedral ring. The M, A, and B cations are located at the borders of the module, whereas C cations are inside the module. The modules are stacked in three different arrangements in LGM allowing distinction of three subgroups: (1) zirsinalite-lovozerite subgroup (includes cation-saturated combeite, kapustinite, kazakovite and zirsinalite, and cation-deficient litvinskite, lovozerite and tisinalite), (2) koashvite subgroup (incl. koashvite) and (3) imandrite subgroup (incl. imandrite). The nature of cation-deficient LGM is discussed. The calculation scheme for empirical formulae of LGM and the criteria of definition of a mineral species (end-members) in the group are given

    Alteration of Feldspathoids Changes pH of Late-Magmatic Fluids: A Case Study from the Lovozero Peralkaline Massif, Russia

    Full text link
    The 360-370-Ma-old Lovozero peralkaline massif (NW Russia) is a layered nepheline syenitic–foidolitic pluton. In the rocks of the massif, late-stage (auto)metasomatic alterations of rock-forming minerals are quite intense. We studied the products of the alteration of nepheline and sodalite via microtextural, microprobe, and spectroscopic methods. We found that these minerals are extensively replaced by the association between natrolite + nordstrandite ± böhmite ± paranatrolite in accordance with the following reactions: 3Nph + 4H2O → Ntr + Nsd + NaOH; 6Nph + 9H2O → Ntr + Pntr + 2Nsd + 2NaOH; Sdl + 4H2O → Ntr + Nsd + NaOH + NaCl, where Nph is nepheline, Ntr is natrolite, Nsd is nordstrandite, Pntr is paranatrolite, and Sdl is sodalite. As a result, about one-third of the sodium from nepheline (and sodalite) is set free and passes into the fluid. This leads to an increase in the Na/Cl ratio and, hence, the pH of the fluid. An increase in pH stabilizes hyperagpaitic minerals (e.g., ussingite, villiaumite, thermonatrite, and trona), which can crystallize in close proximity to pseudomorphized nepheline and sodalite. Thus, the alteration of feldspathoids increases the pH of late-magmatic fluids, which in turn can lead to the crystallization of hyperagpaitic minerals

    Dissolution of the Eudialyte-Group Minerals: Experimental Modeling of Natural Processes

    Full text link
    Eudialyte-group minerals (EGMs) are typical accessory or rock-forming minerals of the Lovozero peralkaline massif (Kola Peninsula, Russia). The EGM grains in the rocks of the massif are often replaced by an association of various secondary minerals such as lovozerite and wöhlerite group minerals, as well as terskite, catapleiite, elpidite, gaidonnayite, vlasovite, zircon, and loparite-(Ce). However, EGMs in the Lovozero massif can be not only pseudomorphized, but also partially or completely dissolved. The partial dissolution of eudialyte grains was simulated in three series of experiments, and the results obtained were compared with natural samples. Observations in natural samples and experimental studies have shown that the partial dissolution of eudialyte-group minerals occurs in two stages: (1) loss of sodium and hydration; (2) loss of other cations not included in the zirconosilicate framework. This process proceeds most intensively in acidic hydrothermal solutions and may be responsible for the appearance of new mineral species in the eudialyte group

    Experimental Modeling of Natural Processes of Nepheline Alteration

    Full text link
    Nepheline, ideally Na3K(Al4Si4O16) is a key mineral of silica-undersaturated igneous rocks. Under subsolidus conditions, nepheline is intensively replaced by numerous secondary minerals, of which various zeolites (mainly natrolite, analcime, gonnardite), as well as cancrinite, muscovite and Al-O-H phases (gibbsite, böhmite, nordstrandite) are the most common. In the rocks of the Lovozero alkaline massif (Kola Peninsula, NW Russia), nepheline is extensively replaced by the association natrolite + nordstrandite ± böhmite ± paranatrolite. To reproduce the conditions for the formation of such a mineral association, a series of experiments were carried out on the dissolution of nepheline in deionized water, 0.5 mol/L NaCl, 0.5 mol/L NaOH, and 0.1 mol/L HCl at 230 °C for 1/5/15 days. When nepheline is partially dissolved, phases and mixtures of phases precipitate on the surface of its grains, and these phases were diagnosed using X-ray powder diffraction and Raman spectroscopy. Observations in natural samples and experimental studies have shown that the nepheline alteration in the rocks of the Lovozero massif with the formation of natrolite and Al-O-H phases occurred under the influence of a high to medium salinity solution at a pH of near 6

    Eudialyte Group Minerals from the Lovozero Alkaline Massif, Russia: Occurrence, Chemical Composition, and Petrogenetic Significance

    Full text link
    The Lovozero Alkaline Massif intruded through the Archean granite-gneiss and Devonian volcaniclastic rocks ca. 360 Ma ago and formed a large laccolith-type body. The lower part of the massif (the Layered complex) is composed of regularly repeating rhythms: melanocratic nepheline syenite (lujavrite, at the top), leucocratic nepheline syenite (foyaite), foidolite (urtite). The upper part of the massif (the Eudialyte complex) is indistinctly layered, and lujavrite enriched with eudialyte-group minerals (EGM) prevails there. In this article, we present the results of a study of the chemical composition and petrography of more than 400 samples of the EGM from the main types of rock of the Lovozero massif. In all types of rock, the EGM form at the late magmatic stage later than alkaline clinopyroxenes and amphiboles or simultaneously with it. When the crystallization of pyroxenes and EGM is simultaneous, the content of ferrous iron in the EGM composition increases. The Mn/Fe ratio in the EGM increases during fractional crystallization from lujavrite to foyaite and urtite. The same process leads to an increase in the modal content of EGM in the foyaite of the Layered complex and to the appearance of primary minerals of the lovozerite group in the foyaite of the Eudialyte complex

    Fluorine Controls Mineral Assemblages of Alkaline Metasomatites

    Full text link
    In the Khibiny and Lovozero alkaline massifs, there are numerous xenoliths of the so-called ‘aluminous hornfelses’ composed of uncommon mineral associations, which, firstly, are ultra-aluminous, and secondly, are highly reduced. (K,Na)-feldspar, albite, hercynite, fayalite, minerals of the phlogopite-annite and cordierite-sekaninaite series, corundum, quartz, muscovite, sillimanite, and andalusite are rock-forming minerals. Fluorite, fluorapatite, ilmenite, pyrrhotite, ulvöspinel, troilite, and native iron are characteristic accessory minerals. The protolith of these rocks is unknown. We studied in detail the petrography, mineralogy, and chemical composition of these rocks and believe that hornfelses were formed as a result of the metasomatic influence of foidolites. The main reason for the formation of an unusual aluminous association is the high mobility of aluminum promoted by the formation of fluid expelled from foidolites of the Na-Al-OH-F complexes. Thus, it is fluorine that controls the mobility of aluminum in the fluid and, consequently, the mineral associations of alkaline metasomatites. The gain of alkalis and aluminum to rocks of protolith was the reason for the intense crystallization of (K,Na)-feldspar. As a result, a SiO2 deficiency was formed, and Si-poor, Al-rich silicates and/or oxides crystallized
    corecore