378 research outputs found
Effects of olive cake meal on serum constituents and fatty acid levels in breast muscle of Japanese quail
This study was aimed at determining the effects of various levels of dietary olive cake meal (OCM) on certain blood parameters and breast muscle fatty acid and cholesterol levels. For this purpose, 400 day-old Japanese quail (Coturnix coturnix japonica) chicks of both sexes were randomly assigned to four trial groups, each including five replicates of 20 animals. The quail were fed on a maize and soybean meal-based basal diet supplemented with 0%, 2.5%, 5% and 7.5% of OCM for six weeks. Dietary supplementation with 5% and 7.5% of OCM decreased total cholesterol and low-density lipoprotein cholesterol levels in the blood serum, and increased cholesterol levels in the breast muscle. Dietary supplementation with various levels of OCM decreased saturated fatty acid and polyunsaturated fatty acid levels, and increased monounsaturated fatty acid and total unsaturated fatty acid levels in the breast muscle. As a result, it was concluded that, olive cake meal, which contains a high level of olive oil, could be incorporated in poultry feed at a level of 5%, owing to its beneficial effects of decreasing serum LDL cholesterol, which plays a major role in the aetiology of cardiovascular diseases, and in reducing saturated fatty acid levels in breast muscle
Current clinician perspective on non-vitamin K antagonist oral anticoagulant use in challenging clinical cases.
OBJECTIVE: The evolution of non-vitamin K antagonist anticoagulants (NOACs) has changed the horizon of stroke prevention in atrial fibrillation (SPAF). All 4 NOACs have been tested against dose-adjusted warfarin in well-designed, pivotal, phase III, randomized, controlled trials (RCTs) and were approved by regulatory authorities for an SPAF indication. However, as traditional RCTs, these trials have important weaknesses, largely related to their complex structure and patient participation, which was limited by strict inclusion and extensive exclusion criteria. In the real world, however, clinicians are often faced with complex, multimorbid patients who are underrepresented in these RCTs. This article is based on a meeting report authored by 12 scientists studying atrial fibrillation (AF) in diverse ways who discussed the management of challenging AF cases that are underrepresented in pivotal NOAC trials. METHODS: An advisory board panel was convened to confer on management strategies for challenging AF cases. The article is derived from a summary of case presentations and the collaborative discussions at the meeting. CONCLUSION: This expert consensus of cardiologists aimed to define management strategies for challenging cases with patients who underrepresented in pivotal trials using case examples from their routine practice. Although strong evidence is lacking, exploratory subgroup analysis of phase III pivotal trials partially informs the management of these patients. Clinical trials with higher external validity are needed to clarify areas of uncertainty. The lack of clear evidence about complex AF cases has pushed clinicians to manage patients based on clinical experience, including rare situations of off-label prescriptions
Recommendations in Second Opinion Reports of Neurologic Head and Neck Imaging:Frequency, Referring Clinicians? Compliance, and Diagnostic Yield
BACKGROUND AND PURPOSE: Second opinion reports of neurologic head and neck imaging are requested with increased regularity, and they may contain a recommendation to the clinician. Our aim was to investigate the frequency and determinants of the presence of a recommendation and the adherence by the referring physician to the recommendation in a second opinion neurology head and neck imaging report and the diagnostic yield of these recommendations. MATERIALS AND METHODS: This retrospective study included 994 consecutive second opinion reports of neurology head and neck imaging examinations performed at a tertiary care center. RESULTS: Of the 994 second opinion reports, 12.2% (121/994) contained a recommendation. An oncologic imaging indication was significantly (P = .030) associated with a lower chance of a recommendation in the second opinion report (OR = .67; 95% CI, 0.46?0.96). Clinicians followed 65.7% (88/134) of the recommendations. None of the investigated variables (patient age, sex, hospitalization status, indication for the second opinion report, experience of the radiologist who signed the second opinion report, strength of the recommendation, and whether the recommendation was made due to apparent quality issues of the original examination) were significantly associated with the compliance of the referring physician to this recommendation. The 134 individual recommendations eventually led to the establishment of 52 (38.2%) benign diagnoses and 28 (20.6%) malignant diagnoses, while no definitive diagnosis could be established in 56 (41.2%) cases. CONCLUSIONS: Recommendations are relatively common in second opinion reports of neurology head and neck imaging examinations, though less for oncologic indications. They are mostly followed by requesting physicians, thus affecting patient management. In most cases, they also lead to the establishment of a diagnosis, hence adding value to patient care
Classical generalized constant coupling model for geometrically frustrated antiferromagnets
A generalized constant coupling approximation for classical geometrically
frustrated antiferromagnets is presented. Starting from a frustrated unit we
introduce the interactions with the surrounding units in terms of an internal
effective field which is fixed by a self consistency condition. Results for the
magnetic susceptibility and specific heat are compared with Monte Carlo data
for the classical Heisenberg model for the pyrochlore and kagome lattices. The
predictions for the susceptibility are found to be essentially exact, and the
corresponding predictions for the specific heat are found to be in very good
agreement with the Monte Carlo results.Comment: 4 pages, 3 figures, 2 columns. Discussion about the zero T value of
the pyrochlore specific heat correcte
Design and Characterization of a Hypervelocity Expansion Tube Facility
We report on the design and characterization of a 152 mm diameter expansion tube capable of accessing a range of high enthalpy test conditions
with Mach numbers up to 7.1 for aerodynamic studies. Expansion tubes
have the potential to offer a wide range of test flow conditions as gas acceleration is achieved through interaction with an unsteady expansion wave
rather than expansion through a fixed area ratio nozzle. However, the range
of test flow conditions is in practice limited by a number of considerations
such as short test time and large amplitude flow disturbances. We present
a generalized design strategy for small-scale expansion tubes. As a starting
point, ideal gas dynamic calculations for optimal facility design to maximize
test time at a given Mach number test condition are presented, together
with a correction for the expansion head reflection through a non-simple
region. A compilation of practical limitations that have been identified for
expansion tube facilities such as diaphragm rupture and flow disturbance
minimization is then used to map out a functional design parameter space.
Experimentally, a range of test conditions have been verified through pitot
pressure measurements and analysis of schlieren images of flow over simple
geometries. To date there has been good agreement between theoretical
and experimental results
Growth Hormone Regulates the Balance Between Bone Formation and Bone Marrow Adiposity
Cancellous bone decreases and bone marrow fat content increases with age. Osteoblasts and adipocytes are derived from a common precursor, and growth hormone (GH), a key hormone in integration of energy metabolism, regulates the differentiation and function of both cell lineages. Since an age-related decline in GH is associated with bone loss, we investigated the relationship between GH and bone marrow adiposity in hypophysectomized (HYPOX) rats and in mice with defects in GH signaling. HYPOX dramatically reduced body weight gain, bone growth and mineralizing perimeter, serum insulin-like growth factor 1 (IGF-1) levels, and mRNA levels for IGF-1 in liver and bone. Despite reduced body mass and adipocyte precursor pool size, HYPOX resulted in a dramatic increase in bone lipid levels, as reflected by increased bone marrow adiposity and bone triglyceride and cholesterol content. GH replacement normalized bone marrow adiposity and precursor pool size, as well as mineralizing perimeter in HYPOX rats. In contrast, 17β -estradiol, IGF-1, thyroxine, and cortisone were ineffective. Parathyroid hormone (PTH) reversed the inhibitory effects of HYPOX on mineralizing perimeter but had no effect on adiposity. Finally, bone marrow adiposity was increased in mice deficient in GH and IGF-1 but not in mice deficient in serum IGF-1. Taken together, our findings indicate that the reciprocal changes in bone and fat mass in GH signaling-deficient rodents are not directly coupled with one another. Rather, GH enhances adipocyte as well as osteoblast precursor pool size. However, GH increases osteoblast differentiation while suppressing bone marrow lipid accumulation. © 2010 American Society for Bone and Mineral Researc
False positives in PIRADS (V2) 3, 4, and 5 lesions:relationship with reader experience and zonal location
PURPOSE: To investigate the effect of reader experience and zonal location on the occurrence of false positives (FPs) in PIRADS (V2) 3, 4, and 5 lesions on multiparametric (MP)-MRI of the prostate. MATERIALS AND METHODS: This retrospective study included 139 patients who had consecutively undergone an MP-MRI of the prostate in combination with a transrectal ultrasound MRI fusion-guided biopsy between 2014 and 2017. MRI exams were prospectively read by a group of inexperienced radiologists (cohort 1; 54 patients) and an experienced radiologist (cohort 2; 85 patients). Multivariable logistic regression analysis was performed to determine the association of experience of the radiologist and zonal location with a FP reading. FP rates were compared between readings by inexperienced and experienced radiologists according to zonal location, using Chi-square (χ2) tests. RESULTS: A total of 168 lesions in 139 patients were detected. Median patient age was 68 years (Interquartile range (IQR) 62.5-73), and median PSA was 10.9 ng/mL (IQR 7.6-15.9) for the entire patient cohort. According to multivariable logistic regression, inexperience of the radiologist was significantly (P = 0.044, odds ratio 1.927, 95% confidence interval [CI] 1.017-3.651) and independently associated with a FP reading, while zonal location was not (P = 0.202, odds ratio 1.444, 95% CI 0.820-2.539). In the transition zone (TZ), the FP rate of the inexperienced radiologists 59% (17/29) was significantly higher (χ2P = 0.033) than that of the experienced radiologist 33% (13/40). CONCLUSION: Inexperience of the radiologist is significantly and independently associated with a FP reading, while zonal location is not. Inexperienced radiologists have a significantly higher FP rate in the TZ
Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [F-18]FDG PET/CT features
Background One of the challenges in the management of patients with follicular lymphoma (FL) is the identification of individuals with histological transformation, most commonly into diffuse large B-cell lymphoma (DLBCL). [F-18]FDG-PET/CT is used for staging of patients with lymphoma, but visual interpretation cannot reliably discern FL from DLBCL. This study evaluated whether radiomic features extracted from clinical baseline [F-18]FDG PET/CT and analyzed by machine learning algorithms may help discriminate FL from DLBCL. Materials and methods Patients were selected based on confirmed histopathological diagnosis of primary FL (n=44) or DLBCL (n=76) and available [F-18]FDG PET/CT with EARL reconstruction parameters within 6 months of diagnosis. Radiomic features were extracted from the volume of interest on co-registered [F-18]FDG PET and CT images. Analysis of selected radiomic features was performed with machine learning classifiers based on logistic regression and tree-based ensemble classifiers (AdaBoosting, Gradient Boosting, and XG Boosting). The performance of radiomic features was compared with a SUVmax-based logistic regression model. Results From the segmented lesions, 121 FL and 227 DLBCL lesions were included for radiomic feature extraction. In total, 79 radiomic features were extracted from the SUVmap, 51 from CT, and 6 shape features. Machine learning classifier Gradient Boosting achieved the best discrimination performance using 136 radiomic features (AUC of 0.86 and accuracy of 80%). SUVmax-based logistic regression model achieved an AUC of 0.79 and an accuracy of 70%. Gradient Boosting classifier had a significantly greater AUC and accuracy compared to the SUVmax-based logistic regression (p Conclusion Machine learning analysis of radiomic features may be of diagnostic value for discriminating FL from DLBCL tumor lesions, beyond that of the SUVmax alone
Synthesis of Glass Nanofibers Using Femtosecond Laser Radiation Under Ambient Condition
We report the unique growth of nanofibers in silica and borosilicate glass using femtosecond laser radiation at 8 MHz repetition rate and a pulse width of 214 fs in air at atmospheric pressure. The nanofibers are grown perpendicular to the substrate surface from the molten material in laser-drilled microvias where they intertwine and bundle up above the surface. The fibers are few tens of nanometers in thickness and up to several millimeters in length. Further, it is found that at some places nanoparticles are attached to the fiber surface along its length. Nanofiber growth is explained by the process of nanojets formed in the molten liquid due to pressure gradient induced from the laser pulses and subsequently drawn into fibers by the intense plasma pressure. The attachment of nanoparticles is due to the condensation of vapor in the plasma
Intracerebroventricular Leptin Infusion Improves Glucose Homeostasis in Lean Type 2 Diabetic MKR Mice via Hepatic Vagal and Non-Vagal Mechanisms
MKR mice, lacking insulin-like growth factor 1 receptor (IGF-1R) signaling in skeletal muscle, are lean yet hyperlipidemic, hyperinsulinemic, and hyperglycemic, with severe insulin resistance and elevated hepatic and skeletal muscle levels of triglycerides. We have previously shown that chronic peripheral administration of the adipokine leptin improves hepatic insulin sensitivity in these mice independently of its effects on food intake. As central leptin signaling has been implicated in the control of peripheral glucose homeostasis, here we examined the ability of central intracerebroventricular leptin administration to affect energy balance and peripheral glucose homeostasis in non-obese diabetic male MKR mice. Central leptin significantly reduced food intake, body weight gain and adiposity, as well as serum glucose, insulin, leptin, free fatty acid and triglyceride levels relative to ACSF treated controls. These reductions were accompanied by increased fat oxidation as measured by indirect calorimetry, as well as increased oxygen consumption. Central leptin also improved glucose tolerance and hepatic insulin sensitivity determined using the euglycemic-hyperinsulinemic clamps relative to pair fed vehicle treated controls, as well as increasing the rate of glucose disappearance. Hepatic vagotomy only partially reversed the ability of central leptin to improve glucose tolerance. These results demonstrate that central leptin dramatically improves insulin sensitivity independently of its effects on food intake, in a lean mouse model of type 2 diabetes. The findings also suggest that: 1) both hepatic vagal and non-vagal pathways contribute to this improvement, and 2) central leptin alters glucose disposal in skeletal muscle in this model
- …