320 research outputs found

    Nonsingular terminal sliding mode control for the speed regulation of permanent magnet synchronous motor with parameter uncertainties

    Get PDF
    The drive performance of permanent magnet synchronous motor (PMSM) can be deteriorated due to various disturbances. In this paper, the problem of speed control for a PMSM system with parameter uncertainties is investigated. A new control algorithm based on nonsingular terminal sliding mode control (NTSMC) is proposed, where the controller is developed for speed regulation. Compared with conventional strategies, this new controller provides improved performance for speed regulation of PMSM when subject to parameter uncertainties, in that it achieves fast dynamic response and strong robustness. Simulation studies are conducted to verify the effectiveness of this proposed method

    Improved Nonlinear Flux Observer-Based Second-Order SOIFO for PMSM Sensorless Control

    Get PDF

    Can we detect coronal mass ejections through asymmetries of Sun-as-a-star extreme-ultraviolet spectral line profiles?

    Full text link
    Coronal mass ejections (CMEs) are the largest-scale eruptive phenomena in the solar system. Associated with enormous plasma ejections and energy release, CMEs have an important impact on the solar-terrestrial environment. Accurate predictions of the arrival times of CMEs at the Earth depend on the precise measurements on their three-dimensional velocities, which can be achieved using simultaneous line-of-sight (LOS) and plane-of-sky (POS) observations. Besides the POS information from routine coronagraph and extreme ultraviolet (EUV) imaging observations, spectroscopic observations could unveil the physical properties of CMEs including their LOS velocities. We propose that spectral line asymmetries measured by Sun-as-a-star spectrographs can be used for routine detections of CMEs and estimations of their LOS velocities during their early propagation phases. Such observations can also provide important clues for the detection of CMEs on other solar-like stars. However, few studies have concentrated on whether we can detect CME signals and accurately diagnose CME properties through Sun-as-a-star spectral observations. In this work, we constructed a geometric CME model and derived the analytical expressions for full-disk integrated EUV line profiles during CMEs. For different CME properties and instrumental configurations, full disk-integrated line profiles were synthesized. We further evaluated the detectability and diagnostic potential of CMEs from the synthetic line profiles. Our investigations provide important constraints on the future design of Sun-as-a-star spectrographs for CME detections through EUV line asymmetries.Comment: 28 pages, 13 figures. Accepted for publication in ApJS. Comments welcome

    LncRNA GAS5 Knockdown Mitigates Hepatic Lipid Accumulation via Regulating MiR-26a-5p/PDE4B to Activate cAMP/CREB Pathway

    Get PDF
    ObjectiveNon-alcoholic fatty liver disease (NAFLD) can be attributed to the dysregulation of hepatic lipid metabolism; however, its cellular and molecular mechanisms remain unclear. This study aims to explore the effect of long non-coding RNA growth arrest specific 5 (GAS5) on hepatic lipid metabolism in fatty liver models.MethodsObese mice, high fat diet-fed mice and free fatty acid-stimulated cells were used for GAS5 expression detection. GAS5 overexpression or knockdown models were established to elucidate the regulatory function of GAS5 in de novo lipogenesis (DNL) and mitochondrial function. Bioinformatic analyses and dual luciferase assays were used to investigate the interaction between GAS5, miR-26a-5p and phosphodiesterase (PDE) 4B. The involvement of the cyclic adenosine monophosphate (cAMP)/cAMP-response element-binding protein (CREB) pathway was evaluated using H89 and forskolin treatment.ResultsGAS5 was activated in vitro and in vivo fatty liver models. Knockdown of GAS5 reduced lipid droplet accumulation, DNL associated enzymes and preserved mitochondrial function, while GAS5 overexpression exacerbated hepatic lipid accumulation. Mechanistically, GAS5 sponged miR-26a-5p to increase PDE4B expression and subsequently modulated DNL and mitochondrial function via the cAMP/CREB pathway.ConclusionDownregulation of GAS5 can activate the cAMP/CREB pathway through miR-26a-5p/PDE4B axis to mitigate hepatic lipid accumulation. This study provides evidence that downregulation of GAS5 may be a potential therapeutic option for the treatment of NAFLD
    • …
    corecore