161 research outputs found

    Metabolic Profiling of Pleurotus tuoliensis During Mycelium Physiological Maturation and Exploration on a Potential Indicator of Mycelial Maturation

    Get PDF
    Pleurotus tuoliensis is a valuable and rare edible fungus with extremely high nutritional and medicinal value. However, the relative immaturity of P. tuoliensis cultivation technology leads to fluctuating yields and quality. The main difficulty in P. tuoliensis cultivation is estimate of mycelial maturity. There is currently no measurable indicator that clearly characterizes the physiological maturation of mycelia. The aim of this study was to identify potential indicators of physiological maturation for P. tuoliensis mycelia by using metabolomics approach. A metabolite profiling strategy involving gas chromatography-mass spectrometry (GC/MS) was used to analyze changes to extracellular metabolites in mycelia collected at mycelium physiological maturation period (MPMP) day 0, MPMP day 35 at 17°C and MPMP day 35 at 29°C. 72 differential metabolites (37.8% up-regulated and 62.2% down-regulated) were identified based on the selected criteria [variable important in projection (VIP) greater than 1.0 and p < 0.01]. Metabolic pathways enrichment analysis showed that these metabolites are involved in glycolysis, organic acid metabolism, amino acid metabolism, tricarboxylic acid cycle (TCA), sugar metabolism, nicotinate and nicotinamide metabolism, and oxidative phosphorylation. In addition, the pyrimidine synthesis pathway was significantly activated during mycelium physiological maturation of P. tuoliensis. The abundance of N-carbamoyl-L-aspartate (CA-asp), a component of this pathway, was significantly increased at MPMP day 35, which motivated us to explore its potential as an indicator for physiological maturation of mycelia. The content of CA-asp in mycelia changed in a consistent manner during physiological maturation. The feasibility of using CA-asp as an indicator for mycelial maturation requires further investigation

    ROCK Inhibitor Y27632 Induced Morphological Shift and Enhanced Neurite Outgrowth-Promoting Property of Olfactory Ensheathing Cells via YAP-Dependent Up-Regulation of L1-CAM

    Get PDF
    Olfactory ensheathing cells (OECs) are heterogeneous in morphology, antigenic profiles and functions, and these OEC subpopulations have shown different outcomes following OEC transplantation for central nervous system (CNS) injuries. Morphologically, OECs are divided into two subpopulations, process-bearing (Schwann cells-like) and flattened (astrocytes-like) OECs, which could switch between each other and are affected by extracellular and intracellular factors. However, neither the relationship between the morphology and function of OECs nor their molecular mechanisms have been clarified. In the present study, we first investigated morphological and functional differences of OECs under different cytokine exposure conditions. It demonstrated that OECs mainly displayed a process-bearing shape under pro-inflammatory conditions (lipopolysaccharide, LPS), while they displayed a flattened shape under anti-inflammatory conditions [interleukin-4 (IL-4) and transforming growth factor-β1 (TGF-β1)]. The morphological changes were partially reversible and the Rho-associated coiled-coil-containing protein kinase (ROCK)/F-actin pathway was involved. Functionally, process-bearing OECs under pro-inflammatory conditions showed increased cellular metabolic activity and a higher migratory rate when compared with flattened OECs under anti-inflammatory conditions and significantly promoted neurite outgrowth and extension. Remarkably, the morphological shift towards process-bearing OECs induced by ROCK inhibitor Y27632 enhanced the neurite outgrowth-promoting property of OECs. Furthermore, as the downstream of the ROCK pathway, transcriptional co-activator Yes-associated protein (YAP) mediated morphological shift and enhanced the neurite outgrowth-promoting property of OECs through upregulating the expression of the neural adhesion molecule L1-CAM. Our data provided evidence that OECs with specific shapes correspond to specific functional phenotypes and opened new insights into the potential combination of OECs and small-molecule ROCK inhibitors for the regeneration of CNS injuries

    Phenformin has anti-tumorigenic effects in human ovarian cancer cells and in an orthotopic mouse model of serous ovarian cancer

    Get PDF
    Obesity and diabetes have been associated with increased risk and worse outcomes in ovarian cancer (OC). The biguanide metformin is used in the treatment of type 2 diabetes and is also believed to have anti-tumorigenic benefits. Metformin is highly hydrophilic and requires organic cation transporters (OCTs) for entry into human cells. Phenformin, another biguanide, was taken off the market due to an increased risk of lactic acidosis over metformin. However, phenformin is not reliant on transporters for cell entry; and thus, may have increased potency as both an anti-diabetic and anti-tumorigenic agent than metformin. Thus, our goal was to evaluate the effect of phenformin on established OC cell lines, primary cultures of human OC cells and in an orthotopic mouse model of high grade serous OC. In three OC cell lines, phenformin significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, caused cellular stress, inhibited adhesion and invasion, and activation of AMPK and inhibition of the mTOR pathway. Phenformin also exerted anti-proliferative effects in seven primary cell cultures of human OC. Lastly, phenformin inhibited tumor growth in an orthotopic mouse model of serous OC, coincident with decreased Ki-67 staining and phosphorylated-S6 expression and increased expression of caspase 3 and phosphorylated-AMPK. Our findings demonstrate that phenformin has anti-tumorigenic effects in OC as previously demonstrated by metformin but it is yet to be determined if it is superior to metformin for the potential treatment of this disease

    Stiffness of Substrate Influences the Distribution but not the Synthesis of Autophagosomes in Human Liver (LO2) Cells

    Get PDF
    Extracellular matrix (ECM) often becomes stiffer during tumor development, which not only gives the tumor's hardness feel but also actively contributes to the tumor formation. A good example is hepatocellular carcinoma (HCC) that usually develops within chronically stiffened liver tissues due to fibrosis and cirrhosis. On the other hand, HCC cells exhibit reduced autophagy in a malignancy dependent manner, suggesting autophagy is suppressed during tumor development. However, it is not known whether ECM stiffness would influence autophagy during tumor development. To investigate this issue, We cultured the human liver (LO2) cells that stably expressed autophagosome indicator LC3 on polydimethylsiloxane (PDMS) gels with stiffness varying from 11 to 1220 kPa. and on plastic cell culture dish as controls for up to 48h. We found that the total protein level of LC3-II in LO2 cells was not affected by the substrate stiffness. However the autophagosomes in LO2 cells cultured on the soft substrate (11 kPa PDMS gel) were localized and accumulated around the nucleus, while those on the stiff substrate (1220 kPa PDMS gel or plastic dish surface) were dispersed throughout the cytoplasmic space. Therefore, our data suggest that ECM stiffness may not directly synthesize nascent autophagosomes, but instead influence the location/translocation and ultimately distribution of autophagosomes in the cells

    Identification of an unfolded protein response-related signature for predicting the prognosis of pancreatic ductal adenocarcinoma

    Get PDF
    BackgroundPancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy. An effective prognosis prediction model is urgently needed for treatment optimization.MethodsThe differentially expressed unfolded protein response (UPR)‒related genes between pancreatic tumor and normal tissue were analyzed using the TCGA-PDAC dataset, and these genes that overlapped with UPR‒related prognostic genes from the E-MTAB-6134 dataset were further analyzed. Univariate, LASSO and multivariate Cox regression analyses were applied to establish a prognostic gene signature, which was evaluated by Kaplan‒Meier curve and receiver operating characteristic (ROC) analyses. E‒MTAB‒6134 was set as the training dataset, while TCGA-PDAC, GSE21501 and ICGC-PACA-AU were used for external validation. Subsequently, a nomogram integrating risk scores and clinical parameters was established, and gene set enrichment analysis (GSEA), tumor immunity analysis and drug sensitivity analysis were conducted.ResultsA UPR-related signature comprising twelve genes was constructed and divided PDAC patients into high- and low-risk groups based on the median risk score. The UPR-related signature accurately predicted the prognosis and acted as an independent prognostic factor of PDAC patients, and the AUCs of the UPR-related signature in predicting PDAC prognosis at 1, 2 and 3 years were all more than 0.7 in the training and validation datasets. The UPR-related signature showed excellent performance in outcome prediction even in different clinicopathological subgroups, including the female (p<0.0001), male (p<0.0001), grade 1/2 (p<0.0001), grade 3 (p=0.028), N0 (p=0.043), N1 (p<0.001), and R0 (p<0.0001) groups. Furthermore, multiple immune-related pathways were enriched in the low-risk group, and risk scores in the low-risk group were also associated with significantly higher levels of tumor-infiltrating lymphocytes (TILs). In addition, DepMap drug sensitivity analysis and our validation experiment showed that PDAC cell lines with high UPR-related risk scores or UPR activation are more sensitive to floxuridine, which is used as an antineoplastic agent.ConclusionHerein, we identified a novel UPR-related prognostic signature that showed high value in predicting survival in patients with PDAC. Targeting these UPR-related genes might be an alternative for PDAC therapy. Further experimental studies are required to reveal how these genes mediate ER stress and PDAC progression

    Microglia Mediate Synaptic Material Clearance at the Early Stage of Rats With Retinitis Pigmentosa

    Get PDF
    Resident microglia are the main immune cells in the retina and play a key role in the pathogenesis of retinitis pigmentosa (RP). Many previous studies on the roles of microglia mainly focused on the neurotoxicity or neuroprotection of photoreceptors, while their contributions to synaptic remodeling of neuronal circuits in the retina of early RP remained unclarified. In the present study, we used Royal College of Surgeons (RCS) rats, a classic RP model characterized by progressive microglia activation and synapse loss, to investigate the constitutive effects of microglia on the synaptic lesions and ectopic neuritogenesis. Rod degeneration resulted in synapse disruption and loss in the outer plexiform layer (OPL) at the early stage of RP. Coincidentally, the resident microglia in the OPL increased phagocytosis and mainly engaged in phagocytic engulfment of postsynaptic mGluR6 of rod bipolar cells (RBCs). Complement pathway might be involved in clearance of postsynaptic elements of RBCs by microglia. We pharmacologically deleted microglia using a CSF1 receptor (CSF1R) inhibitor to confirm this finding, and found that it caused the accumulation of postsynaptic mGluR6 levels and increased the number and length of ectopic dendrites in the RBCs. Interestingly, the numbers of presynaptic sites expressing CtBP2 and colocalized puncta in the OPL of RCS rats were not affected by microglia elimination. However, sustained microglial depletion led to progressive functional deterioration in the retinal responses to light in RCS rats. Based on our results, microglia mediated the remodeling of RBCs by phagocytosing postsynaptic materials and inhibiting ectopic neuritogenesis, contributing to delay the deterioration of vision at the early stage of RP

    Synthesis and biological evaluation of novel 1,2,3-triazole hybrids of cabotegravir: identification of potent antitumor activity against lung cancer

    Get PDF
    In pursuit of discovering novel anticancer agents, we designed and synthesized a series of novel 1,2,3-triazole hybrids based on cabotegravir analogues. These compounds were subjected to initial biological evaluations to assess their anticancer activities against non-small-cell lung cancer (NSCLC). Our findings indicated that some of these compounds exhibited promising antitumor abilities against H460 cells, while demonstrated less efficacy against H1299 cells. Notably, compound 5i emerged as the most potent, displaying an IC50 value of 6.06 μM. Furthermore, our investigations into cell apoptosis and reactive oxygen species (ROS) production revealed that compound 5i significantly induced apoptosis and triggered ROS generation. Additionally, Western blot analysis revealed the pronounced elevation of LC3 expression in H460 cells and γ-H2AX expression in H1299 cells subsequent to treatment with compound 5i. These molecular responses potentially contribute to the observed cell death phenomenon. These findings highlight the potential of compound 5i as a promising candidate for further development as an anticancer agent especially lung cancer

    Potential Tumor Suppressor NESG1 as an Unfavorable Prognosis Factor in Nasopharyngeal Carcinoma

    Get PDF
    BACKGROUND:Recently we identified nasopharyngeal epithelium specific protein 1 (NESG1) as a potential tumor suppressor in nasopharyngeal carcinoma (NPC). The purpose of this study is to investigate the involvement of NESG1 in tumor progression and prognosis of human NPC. METHODOLOGY/PRINCIPAL FINDINGS:NESG1 protein expression in NPC was examined. Survival analysis was performed using Kaplan-Meier method. The effect of NESG1 on cell proliferation, migration, and invasion were also investigated. RESULTS:NESG1 expression was downregulated in atypical hyperplasia and NPC samples compared to normal and squamous nasopharynx tissues. Reduced protein expression was negatively associated with the status of NPC progression. Patients with lower NESG1 expression had a shorter overall survival and disease-free time than did patients with higher NESG1 expression. Multivariate analysis suggested NESG1 expression as an independent prognostic indicator for NPC patient survival. Proliferation, migration, and invasion ability were significantly increased in cell lines following lentiviral-mediated shRNA suppression of NESG1 expression. Microarray analysis indicated that NESG1 participated in multiple pathways, including MAPK signaling and cell cycle regulation. Finally, DNA methylation microarray examination revealed a lack of hypermethylation at the NESG1 promoter, suggesting other mechanisms are involved in suppressing NESG1 expression in NPC. CONCLUSION:Our studies are the first to demonstrate that decreased NESG1 expression is an unfavorable prognostic factor for NPC

    Case Report: Chronic hepatitis E virus Infection in an individual without evidence for immune deficiency

    Get PDF
    Chronic hepatitis E virus (HEV) infection occurs mainly in immunosuppressed populations. We describe an investigation of chronic HEV infection of genotype 3a in an individual without evidence for immune deficiency who presented hepatitis with significant HEV viremia and viral shedding. We monitored HEV RNA in plasma and stools, and assessed anti-HEV specific immune responses. The patient was without apparent immunodeficiency based on quantified results of white blood cell, lymphocyte, neutrophilic granulocyte, CD3+ T cell, CD4+ T cell, and CD8+ T cell counts and CD4/CD8 ratio, as well as total serum IgG, IgM, and IgA, which were in the normal range. Despite HEV specific cellular response and strong humoral immunity being observed, viral shedding persisted up to 109 IU/mL. After treatment with ribavirin combined with interferon, the indicators of liver function in the patient returned to normal, accompanied by complete suppression and clearance of HEV. These results indicate that HEV chronicity can also occur in individuals without evidence of immunodeficiency

    County comprehensive geohazard modelling based on the grid maximum method

    No full text
    Sichuan Province is characterized by great differences in topography, lithologic structure and frequent occurrence of various local disasters. Therefore, it is of great significance to carry out evaluations of the vulnerability of geological disasters. Rockfall and debris flows are landslides in a broad sense. Taking Danba County, Sichuan Province, as a case study, the spatial probability distributions of collapse, landslide and debris flow are comprehensively considered from the perspective of the susceptibility of different types of landslides to regional geological disasters. Based on ArcGIS, 10 key control factors of geological hazards, such as elevation and slope, were selected by a high-precision digital elevation model, and the susceptibility of comprehensive geological hazards was evaluated by an information content model. Finally, the Cell Statistics function of ArcGIS was used to realize the synthesis and comprehensive vulnerability of the maximum value method of multiple raster layers, and the ROC curve was further used to verify the accuracy of the vulnerability model of landslide categories in a single area. According to the natural break point method, the very low-, low-, medium-, high- and very high-prone areas were divided, and the high- and very high-prone areas were mainly concentrated in Zhanggu Town, Taipingqiao Township and Jiaju Town.This paper shows that the information model can evaluate a single type of geological hazard and that the grid maximum method is an effective evaluation method to obtain the comprehensive vulnerability
    • …
    corecore