77 research outputs found

    Heat Transfer of Helix Energy Pile: Part 2—Novel Truncated Cone Helix Energy Pile

    Get PDF
    Owing to the fact that severe thermal interferences exist in the radial and generatrix directions of the traditional cylinder helix energy pile due to the limited thermal heat capacity of the pile and small ratio between coil pitch and radius of pile, therefore, a novel truncated cone helix energy pile (CoHEP) is presented to weaken the thermal interferences and improve the heat transfer efficiency. Further, both the analytical solution model and numerical solution model for CoHEP are built to discuss the dynamic characteristics of thermal interferences and heat transfer performance. The results indicate that the thermal interference of CoHEP is dynamic. The thermal interference in the upper part of the CoHEP is much smaller than the traditional CyHEP. And in general the heat flux per unit pipe length of the novel CoHEP is larger than that of the traditional CyHEP. Heat flux per unit pipe length of the CoHEP increases linearly with inlet water temperature. For the same inlet water temperature, the thermal short circuit is serious at the bottom of the CoHEP, and it’s weak in the upper part of CoHEP. Also it’s obvious that as the inlet water temperature increases, the thermal short circuit becomes more serious

    Heat Transfer of Helix Energy Pile: Part 1: Traditional Cylinder Helix Energy Pile

    Get PDF
    Helix energy pile (HEP) is a new popular ground heat exchanger that has the advantages of large heat exchange rate and low initial cost. As for the traditional helix energy pile, the tube is wound on the cylindrical wall, which is called the cylinder helix energy pile (CyHEP). Further, both analytical solution model and numerical solution model for CyHEP are built to discuss the dynamic characteristics of thermal interferences and heat transfer performance. The results indicate that four heat exchange stages for the spiral pile geothermal heat exchanger along the fluid flow direction are revealed: inlet heat exchange stage, grout thermal short-circuiting stage, small temperature difference stage and outlet heat exchange stage. Each stage has corresponding heat transfer characteristics, and reducing the length of small temperature difference stage and increasing the other stages would enhance the heat exchange of spiral geothermal ground heat exchanger. As the pile diameter increases, the heat transfer per unit tube length decreases, and the heat exchange per unit pile depth increases. As the pile depth increases, the heat transfer per unit tube length and the heat exchange per unit pile depth are reduced. And as the pitch increases, the heat transfer per unit tube length increases, and the heat exchange per unit pile depth decreases

    The contagion effect of jump risk across Asian stock markets during the Covid-19 pandemic

    Get PDF
    This paper tests the market jump contagion hypothesis in the context of the Covid-19 pandemic. We first use a nonparametric approach to identify jumps by decomposing the realized volatility into continuous and jump components, and we use the threshold autoregressive model to describe the jump interdependency structure between different markets. We empirically investigate the contagion effect across several major Asian equity markets (Mainland China, Hong Kong, Japan, South Korea, Singapore, Thailand, and Taiwan) using the 5-minute high frequency data. Some key findings emerge: jump behaviors occur frequently and make an important contribution to the total realized volatility; jump dynamics exhibit significant nonlinearity, asymmetry, and the feature of structural breaks, which can be effectively captured by the threshold autoregressive model; jump contagion effects are obviously detected and this effect varies depending on the regime

    CFD Applications in Ground Source Heat Pump System

    Get PDF
    In ground source heat pump (GSHP) system, computational fluid dynamics (CFD) is commonly used to conduct simulation analysis of its operating characteristics. Particularly, ground heat exchanger (GHE) is the most core component of GSHP system, and the heat transfer characteristics of which with soil around will directly affect the efficiency of the entire system. Thus, CFD is always applied to predict the process of heat transfer around GHE and its influence on heat exchange process. In this chapter, a 3-D numerical model considering dynamic surface condition and initial soil temperature distribution is developed to investigate the thermal performance of helix ground heat exchanger (HGHE) on basis of CFD, and the main influencing factor (inlet water temperature) is studied with the established model. In addition, the experimental investigation is carried out to verify the accuracy of the model. The results are of great significance for exploring the application of CFD in GSHP system

    Breaking K+ Concentration Limit on Cu Nanoneedles for Acidic Electrocatalytic CO2 Reduction to Multi‐Carbon Products

    Get PDF
    Electrocatalytic CO2 reduction reaction (CO2RR) to multi-carbon products (C2+) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+) concentration at the cathode's surface can inhibit proton-diffusion and accelerate the desirable carbon-carbon (C−C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) – thus breaking the K+ solubility limit (3.5 M) – which enables a highly efficient CO2RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+) can be achieved at 1400 mA.cm−2, simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm

    Four sulfur mustard exposure cases: Overall analysis of four types of biomarkers in clinical samples provides positive implication for early diagnosis and treatment monitoring

    Get PDF
    AbstractIn one event, Chinese male individuals accidentally exposed to unknown chemicals and emerged erythema or blisters on contacted organism derma, then hospitalized. To identify the causative agents, blood, urine and exudate samples were collected from the patients during the therapeutic course. Five established liquid chromatography–mass spectrometry (LC–MS) and gas chromatography (GC)–MS methods were employed to analyze the samples. Here, an overall analysis of four types of sulfur mustard biomarkers, including the hydrolysis/oxidation products, β-lyase metabolites, DNA adducts and hemoglobin adducts, was conducted toward the samples from exposed individuals. The results of all the four types of biomarkers in different biomedical matrices showed high relevance, and verified that this exposure is indeed originated from sulfur mustard. The concentrations of the biomarkers in specimens revealed a good correlation with the severity of the patient's symptom. The concentration-time profile demonstrated that most of the biomarkers quickly achieved maximum at the beginning of the course, and then decreased and kept a detectable level until the 7th day after exposure. The DNA adducts in urine samples still appeared on the 30th day, and the N-terminal valine adducts in hemoglobin could be monitored for over 90 days, which was meaningful for the concurrent study of clinical samples. To the best of our knowledge, this work provides the total analysis and profile of four categories of biomarkers in human specimens for the first time, and the good accordance between concentration and level of burns, between time course and biomarkers will be of great importance for early diagnosis and medical treatment monitoring of sulfur mustard exposure

    Connection between right-to-left shunt and photosensitivity: a community-based cross-sectional study

    Get PDF
    BackgroundHypersensitivity to light is a common symptom associated with dysfunction of the occipital region. Earlier studies also suggested that clinically significant right-to-left shunt (RLS) could increase occipital cortical excitability associated with the occurrence of migraine. The aim of this study was to investigate the relationship between RLS and photosensitivity.MethodsThis cross-sectional observational study included the residents aged 18–55 years living in the Mianzhu community between November 2021 and October 2022. Photosensitivity was evaluated using the Photosensitivity Assessment Questionnaire along with baseline clinical data through face-to-face interviews. After the interviews, contrast-transthoracic echocardiography (cTTE) was performed to detect RLS. Inverse probability weighting (IPW) was used to reduce selection bias. Photosensitivity score was compared between individuals with and without significant RLS using multivariable linear regression based on IPW.ResultsA total of 829 participants containing 759 healthy controls and 70 migraineurs were finally included in the analysis. Multivariable linear regression analysis showed that migraine (β = 0.422; 95% CI: 0.086–0.759; p = 0.014) and clinically significant RLS (β = 1.115; 95% CI: 0.760–1.470; p < 0.001) were related to higher photosensitivity score. Subgroup analysis revealed that clinically significant RLS had a positive effect on hypersensitivity to light in the healthy population (β = 0.763; 95% CI: 0.332–1.195; p < 0.001) or migraineurs (β = 1.459; 95% CI: 0.271–2.647; p = 0.010). There was also a significant interaction between RLS and migraine for the association with photophobia (pinteraction = 0.009).ConclusionRLS is associated with photosensitivity independently and might exacerbate photophobia in migraineurs. Future studies with RLS closure are needed to validate the findings.Trial registrationThis study was registered at the Chinese Clinical Trial Register, Natural Population Cohort Study of West China Hospital of Sichuan University, ID: ChiCTR1900024623, URL: https://www.chictr.org.cn/showproj.html?proj=40590

    A Facile Fabrication of CdSe/ZnS QDs—Block Copolymer Brushes-Modified Graphene Oxide Nanohybrid with Temperature-Responsive Behavior

    No full text
    In this paper, we described a straightforward one-step chemical method for the synthesis of semiconductor quantum dots(QDs)—block copolymer brushes functionalized graphene oxide(GO) fluorescence nanohybrids. The azobenzene-terminated block copolymer poly(N-isopropylacrylamid)-b-poly(styrene-co-5-(2-methacryoylethyloxymethyl)-8-quinolinol)(PNIPAM-b-P(St-co-MQ)) was modified on the surface of GO sheets via host–guest interactions between β-cyclodextrin-modified GO and azobenzene moieties, and simultaneously CdSe/ZnS QDs were integrated on the block copolymer brushes through the coordination between 8-hydroxyquinoline units in the polymer brushes and CdSe/ZnS QDs. The resulting fluorescence nanohybrid exhibited dual photoluminescence at 620 nm and 526 nm, respectively, upon excitation at 380 nm and LCST-type thermo-responsive behavior which originated from the change in the PNIPAM conformation in the block copolymer brushes of GO sheets

    Fovea-UNet: detection and segmentation of lymph node metastases in colorectal cancer with deep learning

    No full text
    Abstract Background Colorectal cancer is one of the most serious malignant tumors, and lymph node metastasis (LNM) from colorectal cancer is a major factor for patient management and prognosis. Accurate image detection of LNM is an important task to help clinicians diagnose cancer. Recently, the U-Net architecture based on convolutional neural networks (CNNs) has been widely used to segment image to accomplish more precise cancer diagnosis. However, the accurate segmentation of important regions with high diagnostic value is still a great challenge due to the insufficient capability of CNN and codec structure in aggregating the detailed and non-local contextual information. In this work, we propose a high performance and low computation solution. Methods Inspired by the working principle of Fovea in visual neuroscience, a novel network framework based on U-Net for cancer segmentation named Fovea-UNet is proposed to adaptively adjust the resolution according to the importance-aware of information and selectively focuses on the region most relevant to colorectal LNM. Specifically, we design an effective adaptively optimized pooling operation called Fovea Pooling (FP), which dynamically aggregate the detailed and non-local contextual information according to the pixel-level feature importance. In addition, the improved lightweight backbone network based on GhostNet is adopted to reduce the computational cost caused by FP. Results Experimental results show that our proposed framework can achieve higher performance than other state-of-the-art segmentation networks with 79.38% IoU, 88.51% DSC, 92.82% sensitivity and 84.57% precision on the LNM dataset, and the parameter amount is reduced to 23.23 MB. Conclusions The proposed framework can provide a valid tool for cancer diagnosis, especially for LNM of colorectal cancer
    corecore