124 research outputs found

    GW25-e0768 Circulating level of miR-378 predicts left ventricular hypertrophy in patients with aortic stenosis

    Get PDF

    A review of fly ash-based paste filling deamination methods

    Get PDF
    On the basis of discussing the status of fly ash-based paste filling technology, this paper further discusses the deterioration of downhole air environment caused by ammonia release in fly ash-based paste filling. By analyzing the mechanism of ammonia generation, it was found that NH4 HSO4 and (NH4)2SO4 adsorbed in fly ash are soluble in water and generate NH4+, which will be converted to NH3 and released under alkaline environment. It is studied that the existing methods for removing ammonia adsorbed in fly ash solids, such as alkali addition, oxidation and heating methods, can remove ammonia to an appropriate range and meet the normal use of fly ash. However, since the alkali addition method and the oxidation method need to add chemicals and the fly ash after deamination treatment needs to be heated and dried, the heating method has higher requirements on the heat source, and the high cost makes these methods can not be widely used in the deamination treatment of fly ash-based paste filling. The fly ash is made into slurry, and the basic theory of physical and chemical deamination in sewage is used for reference, and the technical measures to remove ammonia in slurry by stripping method, break-point chlorination method and magnesium ammonium phosphate method are proposed. Among them, the stripping method is stable and does not require additional chemicals, while the break-point chlorination method and magnesium ammonium phosphate method can theoretically remove ammonia from slurry completely, but the required dosage is large, and it is difficult to control the dosage, which affects the ammonia removal effect and the performance of fly ash. Through a comprehensive comparison of the technical characteristics of the above deamination methods, combined with the economic evaluation that the stripping method for treating fly ash slurry has good prospects for engineering applications. Subsequent studies can optimize the operating conditions for the removal of ammonia from fly ash slurry by the stripping method through experiments or simulations, with a view to obtaining better deamination results. In addition, the performance of the filled paste formulated from the deaminated fly ash slurry needs to be paid continuous attention

    Four sulfur mustard exposure cases: Overall analysis of four types of biomarkers in clinical samples provides positive implication for early diagnosis and treatment monitoring

    Get PDF
    AbstractIn one event, Chinese male individuals accidentally exposed to unknown chemicals and emerged erythema or blisters on contacted organism derma, then hospitalized. To identify the causative agents, blood, urine and exudate samples were collected from the patients during the therapeutic course. Five established liquid chromatography–mass spectrometry (LC–MS) and gas chromatography (GC)–MS methods were employed to analyze the samples. Here, an overall analysis of four types of sulfur mustard biomarkers, including the hydrolysis/oxidation products, β-lyase metabolites, DNA adducts and hemoglobin adducts, was conducted toward the samples from exposed individuals. The results of all the four types of biomarkers in different biomedical matrices showed high relevance, and verified that this exposure is indeed originated from sulfur mustard. The concentrations of the biomarkers in specimens revealed a good correlation with the severity of the patient's symptom. The concentration-time profile demonstrated that most of the biomarkers quickly achieved maximum at the beginning of the course, and then decreased and kept a detectable level until the 7th day after exposure. The DNA adducts in urine samples still appeared on the 30th day, and the N-terminal valine adducts in hemoglobin could be monitored for over 90 days, which was meaningful for the concurrent study of clinical samples. To the best of our knowledge, this work provides the total analysis and profile of four categories of biomarkers in human specimens for the first time, and the good accordance between concentration and level of burns, between time course and biomarkers will be of great importance for early diagnosis and medical treatment monitoring of sulfur mustard exposure

    Breaking K+ Concentration Limit on Cu Nanoneedles for Acidic Electrocatalytic CO2 Reduction to Multi‐Carbon Products

    Get PDF
    Electrocatalytic CO2 reduction reaction (CO2RR) to multi-carbon products (C2+) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+) concentration at the cathode's surface can inhibit proton-diffusion and accelerate the desirable carbon-carbon (C−C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) – thus breaking the K+ solubility limit (3.5 M) – which enables a highly efficient CO2RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+) can be achieved at 1400 mA.cm−2, simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm

    Connection between right-to-left shunt and photosensitivity: a community-based cross-sectional study

    Get PDF
    BackgroundHypersensitivity to light is a common symptom associated with dysfunction of the occipital region. Earlier studies also suggested that clinically significant right-to-left shunt (RLS) could increase occipital cortical excitability associated with the occurrence of migraine. The aim of this study was to investigate the relationship between RLS and photosensitivity.MethodsThis cross-sectional observational study included the residents aged 18–55 years living in the Mianzhu community between November 2021 and October 2022. Photosensitivity was evaluated using the Photosensitivity Assessment Questionnaire along with baseline clinical data through face-to-face interviews. After the interviews, contrast-transthoracic echocardiography (cTTE) was performed to detect RLS. Inverse probability weighting (IPW) was used to reduce selection bias. Photosensitivity score was compared between individuals with and without significant RLS using multivariable linear regression based on IPW.ResultsA total of 829 participants containing 759 healthy controls and 70 migraineurs were finally included in the analysis. Multivariable linear regression analysis showed that migraine (β = 0.422; 95% CI: 0.086–0.759; p = 0.014) and clinically significant RLS (β = 1.115; 95% CI: 0.760–1.470; p < 0.001) were related to higher photosensitivity score. Subgroup analysis revealed that clinically significant RLS had a positive effect on hypersensitivity to light in the healthy population (β = 0.763; 95% CI: 0.332–1.195; p < 0.001) or migraineurs (β = 1.459; 95% CI: 0.271–2.647; p = 0.010). There was also a significant interaction between RLS and migraine for the association with photophobia (pinteraction = 0.009).ConclusionRLS is associated with photosensitivity independently and might exacerbate photophobia in migraineurs. Future studies with RLS closure are needed to validate the findings.Trial registrationThis study was registered at the Chinese Clinical Trial Register, Natural Population Cohort Study of West China Hospital of Sichuan University, ID: ChiCTR1900024623, URL: https://www.chictr.org.cn/showproj.html?proj=40590

    Heterogeneous photocatalytic recycling of FeX2/FeX3 for efficient halogenation of C−H bonds using NaX

    Get PDF
    Environmental-friendly halogenation of C−H bonds using abundant, non-toxic halogen salts is in high demand in various chemical industries, yet the efficiency and selectivity of laboratory available protocols are far behind the conventional photolytic halogenation process which uses hazardous halogen sources. Here we report an FeX2 (X=Br, Cl) coupled semiconductor system for efficient, selective, and continuous photocatalytic halogenation using NaX as halogen source under mild conditions. Herein, FeX2 catalyzes the reduction of molecular oxygen and the consumption of generated oxygen radicals, thus boosting the generation of halogen radicals and elemental halogen for direct halogenation and indirect halogenation via the formation of FeX3. Recycling of FeX2 and FeX3 during the photocatalytic process enables the halogenation of a wide range of hydrocarbons in a continuous flow, rendering it a promising method for applications

    Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rice is highly sensitive to drought, and the effect of drought may vary with the different genotypes and development stages. Genome-wide gene expression profiling was used as the initial point to dissect molecular genetic mechanism of this complex trait and provide valuable information for the improvement of drought tolerance in rice. Affymetrix rice genome array containing 48,564 <it>japonica </it>and 1,260 <it>indica </it>sequences was used to analyze the gene expression pattern of rice exposed to drought stress. The transcriptome from leaf, root, and young panicle at three developmental stages was comparatively analyzed combined with bioinformatics exploring drought stress related <it>cis</it>-elements.</p> <p>Results</p> <p>There were 5,284 genes detected to be differentially expressed under drought stress. Most of these genes were tissue- or stage-specific regulated by drought. The tissue-specific down-regulated genes showed distinct function categories as photosynthesis-related genes prevalent in leaf, and the genes involved in cell membrane biogenesis and cell wall modification over-presented in root and young panicle. In a drought environment, several genes, such as <it>GA2ox, SAP15</it>, and <it>Chitinase III</it>, were regulated in a reciprocal way in two tissues at the same development stage. A total of 261 transcription factor genes were detected to be differentially regulated by drought stress. Most of them were also regulated in a tissue- or stage-specific manner. A <it>cis</it>-element containing special CGCG box was identified to over-present in the upstream of 55 common induced genes, and it may be very important for rice plants responding to drought environment.</p> <p>Conclusions</p> <p>Genome-wide gene expression profiling revealed that most of the drought differentially expressed genes (DEGs) were under temporal and spatial regulation, suggesting a crosstalk between various development cues and environmental stimuli. The identification of the differentially regulated DEGs, including TF genes and unique candidate <it>cis</it>-element for drought responsiveness, is a very useful resource for the functional dissection of the molecular mechanism in rice responding to environment stress.</p

    Reduction and Accumulative Characteristics of Dissolved Heavy Metals in Modified Bioretention Media

    No full text
    Twelve bioretention filter columns with different media were designed to study the effects of media on dissolved heavy metals in bioretention systems by changing three test conditions (inflow concentration, discharge ratio, and recurrence interval). The results showed that the average load reduction efficiency of the bioretention soil media (BSM)+10%water treatment residue, BSM+10%green zeolite, and BSM+10%medicinal stone for Cu and Zn was larger than 80%. The highest volume reduction efficiency is 39.25% by BSM+coconut bran. Among the three factors selected in tests, inflow concentration had the biggest degree of influence, followed by discharge ratio and recurrence interval. The media of the upper, middle, and lower layers of each filter column were detected before and after the treatment to study the accumulative characteristics of heavy metals in the bioretention system. The accumulation of Cu, Zn, and Cd in the media of BSM+medicinal stone, BSM+fly ash, BSM+vermiculite, and BSM+turfy soil was relatively low. The contents of the three metals were positively correlated with urease and negatively correlated with protease in the media, but no obvious rule was showed in the accumulation of dissolved heavy metals with depth

    “Waijianü”, “Chujianü” and “Nongjianü” in China

    No full text
    It is of great significance to protect women`s rights to farm land in China. Unfortunately, the 3rd national survey on the status of Chinese Women in 2010 reveals that 21% of rural women lost land. The three words “Waijianü”, “Chujianü”, “Nongjianü” are often used in the news, thesis or judgement and so on. However, there is little about the studies on the mixing use of these three words. The paper will trace the subject of rural women in 5 land reforms to cast light on what the three words mean

    Adsorption Characteristics of Several Bioretention-Modified Fillers for Phosphorus

    No full text
    To optimize the bioretention mixed fillers with better removal of phosphorus, this paper studies the adsorption characteristics of single filler and modified mixed filler through static adsorption experiments, and adopts the dynamical mini-column experiments to examine the adsorption capacities of the soil and modified mixed fillers. Results show that, in the static adsorption experiments, both water treatment residual (WTR) and fly ash exhibit good adsorption capacity when used as a single filler and modifier. Adsorption capacity increases with increasing WTR and fly ash dosage in the mixed filler. The modified mixed filler with WTR exerts a clear effect in the dynamic adsorption experiment, which is unsaturated when influent phosphorus concentration is 1 mg/L and inflow amount is equivalent to 15 years of precipitation. The adsorption capacity of WTR is 3.5&ndash;4.5 times that of other mixed fillers. Fly ash as a modifier shows a poor dynamic adsorption effect and thus must be continuously studied. In this study, WTR is recommended as a bioretention phosphorus removal additive. In engineering applications, the amount of WTR added can be controlled within 5&ndash;10% (by mass) according to influent phosphorus concentration
    corecore